Gypsum crusts and fly ash particles on carbonatic outcrops

  • Marco Del Monte
  • Cristina Sabbioni


A study of the alterations caused by chemical weathering on carbonatic outcrops in the South of France (near Marseille) has revealed the presence of gypsum crusts. An analogy with carbonatic surfaces (marbles and limestones) located in urban areas (monuments and buildings) has therefore been evidenced. An analytical investigation of the morphology, typology and inner structure of the crusts found is presented in this paper.

Furthermore, reference is also made to the identification of fly ash particles embedded in the altered layer: this occurrence enables a limitation of the crust-growth period to the present century. Some hypotheses as to the role played by these particles in the formation of the altered layer have also been advanced. In this regard, the study of particles emitted by coal combustion, one of the major sources of energy, as far as their environment impact is concerned, is of unquestionable importance.


Combustion Waste Water Water Pollution Environment Impact Gypsum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Gipskrusten und Flugascheteilchen auf Carbonat-Schichtköpfen


Die Untersuchung der durch chemische Verwitterung verursachten Änderungen an Carbonat-Schichtköpfen im Süden von Frankreich (bei Marseille) hat das Vorhandensein von Gipskrusten gezeigt. Eine Analogie zu carbonaten Oberflächen (Marmor und Kalkstein) in Stadtgebieten (Monumente und Gebäude) ist damit erwiesen. Eine analytische Erforschung der Morphologie, Typologie und inneren Struktur der gefundenen Krusten wird in dieser Arbeit vorgelegt.

Ferner wird auch Bezug genommen auf die Identifizierung der in die geänderte Schicht eingelagerten Flugascheteilchen. Dieses Vorkommen ermöglichte eine Begrenzung der Periode des Krustenwachstums auf das gegenwärtige Jahrhundert. Einige Hypothesen über die Rolle, die von diesen Teilchen bei der Bildung der geänderten Schicht gespielt wird, werden auch vorgebracht. In dieser Hinsicht ist die Untersuchung der bei der Kohleverbrennung — das ist eine der größten Energiequellen — ermittelten Teilchen, insofern ihr Einfluß auf die Umgebung betrachtet wird, unzweifelhaft von Bedeutung.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Winkler, E. M.: Stone: Properties, Durability in Man's Environment. Wien-New York: Springer 1975.Google Scholar
  2. 2.
    Henley, K. J.: Some Mineralogical Aspects of Air Pollution Damage to Limestone. Proc. Clean Air Conf. Blackpool, 69–74 (1967).Google Scholar
  3. 3.
    Spedding, D. J.: Sulphur Dioxide Uptake by Limestone. Atmos. Environm.3, 683–685 (1969).Google Scholar
  4. 4.
    Braun, R. C., Wilson, M. J. G.: The Removal of Atmospheric Sulphur by Building Stones. Atmos. Environm.10, 371–378 (1970).Google Scholar
  5. 5.
    Del Monte, M., Sabbioni, C., Vittori, O.: Airborne Carbon Particles and Marble Deterioration. Atmos. Environm.15, 645–652 (1981).Google Scholar
  6. 6.
    Camuffo, D., Del Monte, M., Sabbioni, C., Vittori, O.: Wetting, Deterioration and Visual Features of Stone Surfaces in an Urban Area. Atmos. Environm.16, 2253–2259 (1982).Google Scholar
  7. 7.
    Camuffo, D., Del Monte, M., Sabbioni, C.: Origin and Growth Mechanisms of the Sulphated Crusts on Urban Limestone. Water, Air and Soil Pollution19, 351–359 (1983).Google Scholar
  8. 8.
    Cheng, R. J., Castillo, R.: A Study of Marble Deterioration. City Hall, Schenectady, New York. J. Air Pollut. Control Assoc.1, 25–30 (1984).Google Scholar
  9. 9.
    Cheng, R. J., Mohnen, V. A., Current, M., Hudson, J. B.: Characterization of Particulates from Power Plants. J. Air Pollut. Control Assoc.26, 787–790 (1976).Google Scholar
  10. 10.
    Fisher, G. L., Prentice, B. A., Silberman, D., Ondov, J. M., Bierman, A. M., Ragaini, R. C., McFarland, A. R.: Physical and Morphological Studies of Size-Classified Coal Fly Ash. Environm. Sci. Technol.12, 447–451 (1978).Google Scholar
  11. 11.
    Henry, W. M., Knapp, H. T.: Compounds Forms of Fossil Fuel Fly Ash Emissions. Environm. Sci. Technol.14, 450–456 (1980).Google Scholar
  12. 12.
    Ramsden, A. R., Schibaoka, M.: Characterization and Analysis of Individual Fly-Ash Particles from Coal-Fired Power Stations by a Combination of Optical Microscopy, Electron Microscopy and Quantitative Electron Microprobe Analysis. Atmos. Environm.16, 2191–2206 (1982).Google Scholar
  13. 13.
    Del Monte, M., Sabbioni, C.: Morphology and Mineralogy of Fly Ash from a CoalFueled Power Plant. Arch. Met. Geoph. Biocl., Ser. B35, 93–104 (1984).Google Scholar
  14. 14.
    Fisher, G. L., Chang, D. P. Y., Brummer, M.: Fly Ash Collected from Electrostatic Precipitators: Microcrystalline Structures and the Mystery of Spheres. Science192, 553–555 (1976).Google Scholar
  15. 15.
    Dlugi, R., Jordan, S., Lindemann, E.: The Heterogeneous Formation of Sulphate Aerosols in the Atmosphere. J. Aerosol Sci.12, 185–197 (1981).Google Scholar
  16. 16.
    Stinespring, C. D., Stewart, G. W.: Surface Enrichment of Aluminosilicate Minerals and Coal Combustion Ash Particles. Atmos. Environm.15, 307–313 (1981).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Marco Del Monte
    • 1
  • Cristina Sabbioni
    • 2
  1. 1.Istituto di GeologiaUniversità di BolognaBolognaItaly
  2. 2.Istituto FISBAT — CNRBolognaItaly

Personalised recommendations