Advertisement

Some studies on hydrothermal regime and daytime heat fluxes in a desert sandy soil with and without vegetation

  • J. P. Gupta
Article

Summary

The results of the studies conducted during 1977–78 show higher moisture regime of a bare sandy soil of Jodhpur than the soil with vegetative cover. Mean maximum temperature of a bare soil at 5 cm depth, in general, was 1 to 2°C higher than the soil with vegetative cover except during July when there was considerable fall in temperature of a bare soil. Daytime soil temperatures at 5 cm depth during summer were higher than the lower depths leading thereby to downward movement of heat. In winter, however, the temperatures of lower layers were higher facilitating the upward flow of heat and the vapour flux. A high variability in heat fluxes with generally positive daytime heat fluxes in summer and negative in winter were observed.

Keywords

Heat Flux Soil Temperature Vegetative Cover Bare Soil Moisture Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Untersuchungen über die hydrothermischen Verhältnisse und den täglichen Wärmefluß in sandigem Wüstenboden mit und ohne Vegetationsdecke

Zusammenfassung

Die Ergebnisse der Untersuchung zeigen, daß in Jodhpur die Feuchtigkeit in kahlem sandigen Boden größer ist als in einem Boden unter einer Vegetationsdecke. Das mittlere Temperaturmaximum war in 5 cm Tiefe im allgemeinen um 1 bis 2°C höher als im Boden unter einer Vegetationsdecke, ausgenommen im Juh, wo eine beträchtliche Temperatur-abnahme im kahlen Boden eintrat. Die Tagestemperatur in 5 cm Tiefe war im Sommer höher als in tieferen Schichten, was zu einem abwärtsgerichteten Wärmefluß führte. Im Winter waren die Temperaturen in tieferen Schichten höher, was einen aufwärtsgerichteten Fluß von Wärme und Wasserdampf bewirkte. Es wurde eine große Veränderlichkeit des Wärmeflusses mit im allgemeinen positivem Fluß im Sommer und negativem Fluß im Winter beobachtet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuchs, M., Hadas, A.: The Heat Flux Density in a Non-Homogenous Bare Loessial Soil. Boundary-Layer Met.3, 191–200 (1972).CrossRefGoogle Scholar
  2. 2.
    Krishnan, A., Kushwaha, R. S.: Study of Average Heat Fluxes in Various Layers of the Soil and Their Seasonal Variation in Jodhpur. Arch. Met. Geoph. Biokl., Ser. B22, 247–256 (1974).CrossRefGoogle Scholar
  3. 3.
    Krishnan, A., Rao, G. G. S. N.: Soil Temperature Regime in the Arid Zone of India. Arch. Met. Geoph. Biokl., Ser. B27, 15–22 (1979).CrossRefGoogle Scholar
  4. 4.
    Rose, C. W.: Water Transport in Soil With a Daily Temperature Wave I. Theory and Experiment. Aus. J. Soil Res.6, 31–44 (1968).CrossRefGoogle Scholar
  5. 5.
    Rose, C. W.: Water Transport in Soil With a Daily Temperature Wave II. Analyses. Aus. J. Soil Res.6, 45–57 (1968).CrossRefGoogle Scholar
  6. 6.
    Vries, D. A. de: In: Thermal Properties of Soils. Physics of Plant Environment (Van Wijk, W. R., ed.), pp. 210–235. New York: J. Wiley and Sons 1963.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. P. Gupta
    • 1
  1. 1.Division of Soil-Water-Plant RelationshipCentral Arid Zone Research InstituteJodhpurIndia

Personalised recommendations