Journal of Dynamical and Control Systems

, Volume 1, Issue 3, pp 427–445 | Cite as

Fuchsian groups from the dynamical viewpoint

  • A. N. Starkov


Here we survey the results on the structure of Fuchsian groups due to Hopf, Hedlund, Sullivan, Nicholls, Pommerenke, and others from the viewpoint of the dynamics of the geodesic and horocycle flows on the corresponding surfaces. Special attention is given to the structure of horocycle orbits; in particular, we construct Fuchsian groups with new types of horocycle orbits which are neither closed nor dense in the nonwandering set. We give a unique classification of Fuchsian groups from the dynamical viewpoint and indicate some open problems.

1991 Mathematics Subject Classification

28D 20H10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Steklov Math. Inst.90 (1969), 1–235.Google Scholar
  2. 2.
    —, On a class of invariant sets of smooth dynamical systems. Proc. Fifth Intern. Congr. Nonlinear Oscillations, Inst. Math. Acad. Sci. Ukr. SSR, Kiev2 (1970), 39–45.Google Scholar
  3. 3.
    A. F. Beardon, The Geometry of Discrete Groups.New York-Heidelberg-Berlin:Springer-Verlag, 1983Google Scholar
  4. 4.
    M. Burger, Horocycle flow on geometrically finite surfaces.Duke Math. J. 61 (1990), 779–803.Google Scholar
  5. 5.
    S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms.Adv. Sov. Math. 16 (1993), 91–137.Google Scholar
  6. 6.
    Y. Guivarch, Proprietes ergodiques, en mesure infinie, de certains systems dynamiques fibres.Ergod. Theor. and Dynam. Syst. 9 (1989), 433–453.Google Scholar
  7. 7.
    E. Hopf, Statistik der geodatischen Linien in Mannigfaltigkeiten negativer Krummung.Ber. Verh. Sachs. Akad. Wiss. Leipzig Math.-Nat. Kl. 51 (1939), 261–304.Google Scholar
  8. 8.
    G. A. Hedlund, Fuchsian groups and transitive horocycles.Duke Math. J. 2 (1936), 530–542.Google Scholar
  9. 9.
    G. A. Margulis, Compactness of minimal closed invariant sets of actions of unipotent groups.Geom. Dedicata 37 (1991), 1–7.Google Scholar
  10. 10.
    P. J. Nicholls, The ergodic theory of discrete groups.London Math. Soc. Notes 143 (1989).Google Scholar
  11. 11.
    —, Transitivity properties of Fuchsian groups.Can. J. Math. 28 (1976), 805–814.Google Scholar
  12. 12.
    —, Granett points for Fuchsian groups.Bull. London Math. Soc. 12 (1980), 216–218.Google Scholar
  13. 13.
    —, Fundamental domains of Fuchsian groups.Math. Z. 174 (1980), 187–196.Google Scholar
  14. 14.
    S. J. Patterson, Some examples of Fuchsian groups.Proc. London Math. Soc. 39 (1979), 276–298.Google Scholar
  15. 15.
    Ch. Pommerenke, On the Green's function of Fuchsian groups.Ann. Acad. Sci. Fenn. 2 (1976), 409–427.Google Scholar
  16. 16.
    —, On Fuchsian groups of divergent type.Mich. Math. J. 28 (1981), 297–310.Google Scholar
  17. 17.
    —, On Fuchsian groups of accessible type.Ann. Acad. Sci. Fenn. 7 (1982), 249–258.Google Scholar
  18. 18.
    M. Rees, Checking ergodicity of some geodesic flows with infinite Gibbs measure.Ergod. Theor. and Dynam. Syst. 1 (1981), 107–133.Google Scholar
  19. 19.
    D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions.Proc. Stony Brook Conf. on Kleinian groups and Riemann Surfaces (1978), 465–496.Google Scholar
  20. 20.
    H. Shirakawa, An example of infinite measure preserving geodesic flows on a surface with constant negative curvature.Comm. Math. Univ. St. Pauli 31 (1982), 163–182.Google Scholar
  21. 21.
    M. Taniguchi, Examples of discrete groups of hyperbolic motions conservative but not ergodic at infinity.Ergod. Theor. and Dynam. Syst. 8 (1988), 633–636.Google Scholar
  22. 22.
    P. Tukia, Rigidity theorem for Mobius groups.Invent. Math. 97 (1989), 405–431.Google Scholar
  23. 23.
    E. B. Vinberg and O. V. Shvartsman, Riemann surfaces. In:Itogi Nauki i Tehniki, VINITI, Algebra-Topology-Geometry, Moscow 16 (1978), 191–245.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. N. Starkov
    • 1
    • 2
  1. 1.All-Russian Electrotechnical InstituteIstra, Moscow regionRussia
  2. 2.Department of MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations