Advertisement

Chromatographia

, Volume 9, Issue 2, pp 74–77 | Cite as

Thin-layer adsorption chromatography; Influence of adsorbent porosity on the relationship between RM values and the composition of a mobile phase consisting of nonpolar and electron donor components

  • J. K. Różyło
Originals

Summary

The present paper deals with the applicability of the equation relating RM values of the solute to the composition of a two-component liquid mobile phase. Dependence of the above factors on the porosity of silica gel adsorbents, used as a stationary phase, was examined. The examinations were carried out on adsorbents with pore diameters ranging from 60 to 1000 Å. The mobile phase was a two-component solvent mixture: carbon tetrachloride — acetone. A number of aromatics were used as model solutes. The examinations showed that the porosity of silica gels when using two-component solvent mixtures which are conformal solutions as the mobile phase, has no influence on the agreement of the theoretical and experimental\(R_{M_{1,2} } = f(\varphi _1 )\) functions. A fairly good agreement was obtained between the theoretical and experimental data.

Keywords

Porosity Mobile Phase Electron Donor Pore Diameter Tetrachloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Helferich, G. Klein, Multicomponent Chromatography, M. Dekker, New York, N.Y. 1970.Google Scholar
  2. [2]
    J. K. Różyło, Wiad. Chem.4, 301 (1968).Google Scholar
  3. [3]
    A. Waksmundzki, J. K. Różyło, J. Chromatog.33, 96 (1968).CrossRefGoogle Scholar
  4. [4]
    L. R. Snyder, in “Advances in Chromatography”, Vol. 4,J. C. Giddings andR. A. Keller, eds., M. Dekker, New York, N.Y. 1967; p. 3.Google Scholar
  5. [5]
    E. Soczewiński, H. Szumiło, J. Chromatog.94, 229 (1974).Google Scholar
  6. [6]
    J. C. Giddings, “Fundamentals of Chromatography, Vol. 1”, M. Dekker Inc., New York, N.Y. 1967.Google Scholar
  7. [7]
    L. R. Snyder, “Principles of Adsorption Chromatography”, M. Dekker, New York, N.Y. 1968.Google Scholar
  8. [8]
    L. R. Snyder, J. Chromatog. Sci.8, 706 (1970).Google Scholar
  9. [9]
    E. Soczewiński, M. Ciszewska, J. Chromatog.96, 163 (1974).Google Scholar
  10. [10]
    E. Soczewiński, W. Gołkiewicz, H. Szumilo, J. Chromatog.45, 1 (1969).Google Scholar
  11. [11]
    E. Soczewiński, G. Matysik, J. Chromatog.96, 155 (1974).Google Scholar
  12. [12]
    E. Soczewiński, W. Golkiewicz, Chromatographia5, 431 (1972).Google Scholar
  13. [13]
    J. Ościk, in “Fiziceskaja adsorbcija iz mnogokomponentnych faz,” Nauka, ed. Moscow, 1972; p. 138.Google Scholar
  14. [14]
    J. Ościk, in “Scientific Reports of Second State Conference on the Theoretical Aspects of Adsorption”, U.S.S.R. Academy of Sciences, Moscow, 1969; p. 111.Google Scholar
  15. [15]
    J. Ościk, J. K. Różyło, Chromatographia4, 516 (1971).Google Scholar
  16. [16]
    J. Ościk, G. Chojnacka, J. Chromatog.93, 167 (1974).Google Scholar
  17. [17]
    J. K. Różyło, J. Chromatog.93, 177 (1974).Google Scholar
  18. [18]
    J. K. Różyło, Chem. Anal.19, 1167 (1974).Google Scholar
  19. [19]
    J. K. Różyło, Chromatographia8, 390 (1975).Google Scholar
  20. [20]
    J. K. Różyło, Chem. Anal.20, 489 (1975).Google Scholar
  21. [21]
    G. C. Pimentel, A. L. McClellan, “The Hydrogen Bond”, Freeman, San Francisco, Calif., 1961.Google Scholar
  22. [22]
    J. Ościk, R. Nasuto, Folia Soc. Scient. Lublinesis, Sec. C7/8, 61 (1967/68).Google Scholar
  23. [23]
    L. R. Snyder, J. W. Ward, J. Phys. Chem.70, 3941 (1966).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn, Verlagschesellschaft mbH 1976

Authors and Affiliations

  • J. K. Różyło
    • 1
  1. 1.Department of Physical Chemistry, Institute of ChemistryM. Curie-Skłodowska UniversityLublinPoland

Personalised recommendations