Chromatographia

, Volume 11, Issue 10, pp 573–577 | Cite as

A simple gas chromatographic-mass spectrometric method for the concurrent determination of novel pentafluoropropionated derivatives of histidine, histamine and their 1-methyl metabolites

  • N. Mahy
  • E. Gelpi
Originals

Summary

Histidine, 1,4-methylhistidine, histamine and 1,4-methyl-histamine were reacted directly for 1.5 hours at 70°C with pentafluoropropionic anhydride (PFPA). No previous esterification of the carboxyl group is needed. The reaction mixture, taken to dryness and redissolved in acetonitrile, can be separated on 3% OV-17 (retention indices: 1736, 1582, 1827 and 1763) and 3% OV-225 (retention indices: 2355, 2015, 2443 and 2147). The derivatives thus obtained are stable for one week at −4°C. The mass spectra of pentafluoropropionated histidine and 1,4-methylhistidine show relatively abundant molecular ions at m/e 403 and m/e 417 respectively, which confirm the incorporation of two PFP groups in both cases. However, both of these m/e values are 44 mass units less than the calculated relative molecular masses, a fact that can be accounted for by an intramolecular decarboxylation during derivatization. Histamine and 1,4-methylhistamine give molecular ions at m/e 257 and m/e 271, corresponding to the calculated values of the monoacylated derivatives.

Keywords

Carboxyl Molecular Mass Histamine Anhydride Histidine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kataora, M. andDe Robertis, E., J. Pharmacol. Exp. Ther.156, 114 (1967).Google Scholar
  2. [2]
    Green, J. P., in: Handbook of Neurochemistry, Vol. IV, Ed.Ladjfha, A., Plenum Press, New York (1970).Google Scholar
  3. [3]
    Schayer, R. W. andReilly, M. A., J. Neurochem.17, 1649 (1970).Google Scholar
  4. [4]
    Schwartz, J. C., Pollard, H., Bischoff, S., Rehaut, M. C. andVerdiere-Sahuque, C., Eur. J. Pharmacol.16, 326 (1971).Google Scholar
  5. [5]
    Dismukes, H., Kuhar, J. andSnyder, S. H., Brain Research78, 144 (1974).Google Scholar
  6. [6]
    Schwartz, J. C., Rose, C. andCailleux, H. J., Pharmac. Exptl. Ther.184, 766.Google Scholar
  7. [7]
    Schayer, R. W. andKarjala, S. A. J. Biol. Chem.,227, 307 (1956).Google Scholar
  8. [8]
    Black, J. W. andGanellin, C. R., Experientia30, 111 (1974).Google Scholar
  9. [9]
    Mahy, N. andGelpi, E., J. of Chrom.130, 237 (1977).Google Scholar
  10. [10]
    Husek, P. andMacek, K., J. of Chrom.113, 139 (1975).Google Scholar
  11. [11]
    Iain McArthur, J. of Chrom.99, 495 (1974).Google Scholar
  12. [12]
    Gehrke, C. W., J. of Chrom.57, 209 (1971).Google Scholar
  13. [13]
    Adams, R. F., J. of Chrom.95, 189 (1974).Google Scholar
  14. [14]
    Appelquist, L. A. andNair, B. M., J. of Chrom.124, 239 (1976).Google Scholar
  15. [15]
    Woodward, R. B., Tetrahedron19, 247 (1963).Google Scholar
  16. [16]
    Stalling, D. L., Gille, G. andGehrke, C. W., Anal. Biochem.18, 118 (1967).Google Scholar
  17. [17]
    Makisumi, S. andSaroff, H. A., J. Gas Chromatogr.3, 21 (1965).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagschesellschaft mbH 1978

Authors and Affiliations

  • N. Mahy
    • 1
  • E. Gelpi
    • 1
  1. 1.Instituto de Biofísica y NeurobiologiaBarcelona 25Spain

Personalised recommendations