Advertisement

Chromatographia

, Volume 22, Issue 7–12, pp 363–369 | Cite as

Isomer specific determination of polychlorinated biphenyls in animal tissues by gas chromatography mass spectrometry

  • W. A. Heidmann
Originals

Summary

A procedure was developed which determines the concentration and composition of PCB mixtures in animal tissues by using seven standard congeners to take in consideration the different sensitivities of isomers of different level of chlorination. The selection criterion of these congeners is the abundance in animal tissues. The PCB mixture present in the matrix is not compared with a commercial mixture, rather, the PCB congeners are analysed individually and summed up to give the real concentration. However, because congeners of very small abundances are neglected, some 10% of the PCB mixture is not evaluated. Therefore, a correlation with a high chlorinated commercial mixture (Aroclor 1254 and Clophen A 60) is necessary. The PCB concentrations measured in animal tissues are compared with those received according to a conventional procedure and the PCB composition found are discussed. Finally, an attempt will be made to define a simple measure for the degree of metabolization of a PCB mixture present in animals.

Key Words

Gas chromatography/mass spectrometry PCB Animal tissues Trace analysis Isomer determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. G. Webb, A. C. McCall, J. Chromatogr. Sci.11, 366 (1973).PubMedGoogle Scholar
  2. [2]
    E. Schulte, H. P. Thier, L. Acker, Dtsch. Lebensm. Rundsch.72, 229 (1976).Google Scholar
  3. [3]
    E. Schulte, R. Malisch, Fresenius Z. Anal. Chem.319, 54 (1984).CrossRefGoogle Scholar
  4. [4]
    H. Beck, W. Mathar, Bundesgesundheitsbl.28, 1 (1985).Google Scholar
  5. [5]
    S. D. Cooper, M. A. Moseley, E. D. Pellizari, Anal. Chem.57, 2469 (1985).CrossRefGoogle Scholar
  6. [6]
    E. Schulte, R. Malisch, Fresenius Z. Anal. Chem.314, 545 (1983).CrossRefGoogle Scholar
  7. [7]
    G. D. Martelli, M. G. Castelli, Biomed. Mass Spectrom.8, 347 (1981).CrossRefGoogle Scholar
  8. [8]
    J. E. Gebhart, T. L. Hayes, H. L. Alford-Stevens, W. L. Budde, Anal. Chem.57, 2458 (1985).CrossRefGoogle Scholar
  9. [9]
    E. D. Pellizari, M. A. Moseley, S. D. Cooper, J. Chromatogr.334, 277 (1985).CrossRefPubMedGoogle Scholar
  10. [10]
    J. E. Gebhardt, T. L. Hayes, H. L. Alford-Stevens, W. L. Budde, Anal. Chem.57, 2464 (1985).CrossRefGoogle Scholar
  11. [11]
    H. Steinwandter, Fresenius Z. Anal. Chem.312 (1982).Google Scholar
  12. [12]
    C. M. Smith, D. L. Stalling, J. L. Johnson, Anal. Chem.,56, 1830 (1984).CrossRefPubMedGoogle Scholar
  13. [13]
    G. Schomburg, H. Husmann, H. Borwitzky, Chromatographia12, 651 (1979).Google Scholar
  14. [14]
    K. Ballschmiter, M. Zell, Fresenius Z. Anal. Chem.302, 20 (1980).CrossRefGoogle Scholar
  15. [15]
    P. W. Albro, J. T. Corbett, J. L. Schroeder, J. Chromatogr.205, 103 (1981).CrossRefGoogle Scholar
  16. [16]
    A. Büthe, W. A. Heidmann, in “Rückstandsanalytik von Wirkstoffen in tierischen Produkten”,H. A. Rüssel, Georg Thieme Verlag, Stuttgart, 1986, in press.Google Scholar
  17. [17]
    W. A. Heidmann, Seevögel 6, special edition, 63 (1985).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1986

Authors and Affiliations

  • W. A. Heidmann
    • 1
  1. 1.Chemisches InstitutTierärztliche HochschuleHannover 1FRG

Personalised recommendations