Skip to main content
Log in

Diffusion inside particles in HPLC columns

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The stationary zone mass transfer coefficient (C5) in the reduced plate height equation has been determined experimentally for an adsorption and a partition system generated on the same column. Longitudinal diffusion terms (B-terms) were measured on these systems by applying the arrested elution method.

The experimentally determined C5 terms for the LLC system are 4–6 times lower than for the LSC system.

B-terms for the LLC system were found to be dependent on capacity ratios and were substantially larger than the B-term for the LSC system, which turned out to be independent of capacity ratios. The obstruction factor (γip) for the intraparticle pore space was estimated by fitting the experimentally determined effective diffusion coefficients according to a mass transfer equation for packed beds. This equation was obtained by transforming a known expression for heat transfer in packed beds.

Knowledge of γp allows the prediction of the magnitude of the stationary zone mass transfer (C5-term) and the comparison between the experimental and predicted values. The agreement is good in the LSC system. In the LLC system the predicted and experimental C5 values for capacity ratios up to k′=2.00 are well matched, whereas the difference becomes larger from k′=3 on.

This paper explains why the efficiency of straight phase LSC systems is often substantially surpassed by analogous LLC systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Crombeen, S. Heemstra, J. C. Kraak. J. Chromatogr.,286, 119–129 (1984).

    Article  Google Scholar 

  2. J. P. Crombeen, S. Heemstra, J. C. Kraak, Chromatographia,19, 219–224 (1984).

    Google Scholar 

  3. J. J. Kirkland, J. J. De Stefano, J. Chrom. Sci.,8, 309–314 (1970).

    Google Scholar 

  4. D. F. Horgan, Jr., J. N. Little, J. Chrom. Sci.,10, 76–79 (1972).

    Google Scholar 

  5. J. J. Kirkland, J. Chrom. Sci.,10, 593–599 (1972).

    Google Scholar 

  6. J. J. Kirkland, C. H. Dilks, Jr., Analyt. Chem.,45, 1778–1781 (1973).

    Article  Google Scholar 

  7. H. Engelhardt, J. Asshauer, U. Neue, N. Weigand, Analyt. Chem.46, 336–340 (1974).

    Article  Google Scholar 

  8. C. Gonnet, J. L. Rocca, J. Chromatogr.,109, 297–303 (1975).

    Article  PubMed  Google Scholar 

  9. J. F. K. Huber, M. Pawlowska, P. Markl. Chromatographia,17, 653–663 (1983).

    Article  Google Scholar 

  10. J. P. Crombeen, S. Heemstra, J. C. Kraak, J. Chromatogr.,282, 95–106 (1983).

    Article  Google Scholar 

  11. J. F. K. Huber, M. Pawlowska, P. Markl, Chromatographia,19, 19–28 (1984).

    Google Scholar 

  12. J. C. Giddings, Ed.: Dynamics of Chromatography, Part I, Marcel Dekker, Inc., New York, 1965.

    Google Scholar 

  13. J. J. van Deemter, F. J. Zuiderweg, A. Klinkenberg, Chem. Eng. Sci.5, 271 (1956).

    Article  Google Scholar 

  14. G. J. Kennedy, J. H. Knox, J. Chrom. Sci.,10, 549–556 (1972).

    Google Scholar 

  15. J. F. K. Huber, Ber. Bunsenges. physik. Chemie,77, 179–184 (1973).

    Google Scholar 

  16. C. Horvath, H. -J. Lin, J. Chromatogr.126, 401–420 (1976).

    Article  Google Scholar 

  17. J. H. Knox, J. F. Parcher, Analyt. Chem.,41, 1599–1606 (1969).

    Article  Google Scholar 

  18. J. N. Done, J. H. Knox, J. Chrom. Sci.,10, 606–612 (1972).

    Google Scholar 

  19. J. H. Knox, H. P. Scott, J. Chromatogr.282, 297–313 (1983).

    Article  Google Scholar 

  20. P. Zehner, E. U. Schlünder, Chemie-Ing.-Techn.,42, 933–941 (1970).

    Article  Google Scholar 

  21. R. W. Stout, J. J. DeStefano, L. R. Snyder, J. Chromatogr.,282, 263–286 (1983).

    Article  Google Scholar 

  22. J. H. Knox, L. McLaren. Analyt. Chem.,36, 1477–1482 (1964).

    Article  Google Scholar 

  23. S. Bretsznajder, Ed., Prediction of transport and other physical properties of fluids, Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crombeen, J.P., Poppe, H. & Kraak, J.C. Diffusion inside particles in HPLC columns. Chromatographia 22, 319–328 (1986). https://doi.org/10.1007/BF02268783

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02268783

Key Words

Navigation