Mycoscience

, Volume 36, Issue 1, pp 127–133 | Cite as

Homologous and heterologous gene transfer systems in basidiomycetes

  • Thierry Noël
  • Jacques Labarère
Review
  • 63 Downloads

Key Words

genetic transformation homologous-heterologous gene expression Hymenomycetes Teliomycetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Akileswaran, L., Alic, M., Clark, E. K., Hornick, J. L. and Gold, M. H. 1993. Islation and transformation of uracil auxotrophs of the lignin-degrading basidiomycetePhanerochaete chrysosporium. Curr. Genet.23: 351–356.Google Scholar
  2. Alic, M., Clark, E. K., Kornegay, J. R. and Gold, M. H. 1990. Transformation ofPhanerochaete chrysosporium andNeurospora crassa with adenine biosynthetic genes fromSchizophyllum commune. Curr. Genet.17: 305–311.Google Scholar
  3. Alic, M., Kornegay, J. R., Pribnow, D. and Gold, M. H. 1989. Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycetePhanerochaete chrysosporium. Appl. Environ. Microbiol.55: 406–411.Google Scholar
  4. Alic, M., Mayfield, M. B., Akileswaran, L. and Gold, M. H. 1991. Homologous transformation of the lignin-degrading basidiomycetePhanerochaete chrysosporium. Curr. Genet.19: 491–494.Google Scholar
  5. Bakkeren, G. and Kronstad, J. W. 1993. Conservation of theb mating-type gene complex among bipolar and tetrapolar smut fungi. Plant Cell5: 123–136.Google Scholar
  6. Banks, G. R. and Taylor, S. Y. 1988. Cloning of thePYR3 gene ofUstilago maydis and its use in DNA transformation. Mol. Cell. Biol.8: 5417–5424.Google Scholar
  7. Barret, V., Dixon, R. K. and Lemke, P. A. 1990. Genetic transformation of a mycorrhizal fungus. Appl. Microbiol. Biotechnol.33: 313–316.Google Scholar
  8. Barroso, G., Moulinier, T. and Labarère, J. 1992. Involvement of a large inverted repeated sequence in a recombinational rearrangement of the mitochondrial genome of the higher fungusAgrocybe aegerita. Curr. Genet.22: 155–161.Google Scholar
  9. Bej, A. K. and Perlin, M. H. 1989. A high efficiency transformation system for the basidiomyceteUstilago violacea employing hygromycin resistance and lithium-acetate treatment. Gene80: 171–176.Google Scholar
  10. Bej, A. K. and Perlin, M. H. 1991. Acquistion of mitochondrial DNA by a transformation vector forUstilago violacea. Gene98: 135–140.Google Scholar
  11. Binninger, D. M., Le Chevanton, L., Skrzynia, C., Shubkin, C. D. and Pukkila, P. J. 1991. Targeted transformation inCoprinus cinereus. Mol. Gen. Genet.227: 245–251.Google Scholar
  12. Binninger, D. M., Skrzynia, C., Pukkila, P. J. and Casselton, L. A. 1987. DNA-mediated transformation of the basidiomyceteCoprinus cinereus. EMBO J.6: 835–840.Google Scholar
  13. Burrows, D. M., Elliot, T. J. and Casselton, L. A. 1990. DNA-mediated transformation of the secondarily homothallic basidiomyceteCoprinus bilanatus. Curr. Genet.17: 175–177.Google Scholar
  14. Casselton, L. A. and de La Fuente Herce, A. 1989. Heterologous gene expression in the basidiomycete fungusCoprinus cinereus. Curr. Genet.16: 35–40.Google Scholar
  15. Challen, M. P., Elliot, T. J., Kües, U. and Casselton, L. A. 1993. Expression ofA mating type genes ofCoprinus cinereus in a heterologous basidiomycete host. Mol. Gen. Genet.241: 474–478.Google Scholar
  16. Fincham, J. R. S. 1989. Transformation in fungi. Microbiol. Rev.53: 148–170.Google Scholar
  17. Fotheringham, S. and Holloman, W. K. 1989. Cloning and disruption ofUstilago maydis genes. Mol. Cell. Biol.9: 4052–4055.Google Scholar
  18. Froeliger, E. H., Munoz-Rivas, A. M. and Specht, C. A. 1987. The isolation of specific genes from the basidiomyceteSchizophyllum commune. Curr. Genet.12: 547–554.Google Scholar
  19. Gessner, M. and Raeder, U. 1994. A histoneH4 promoter for expression of a phleomycin-resistance gene inPhanerochaete chrysosporium. Gene142: 237–241.Google Scholar
  20. Giasson, L., Specht, C. A., Milgrim, C., Novotny, C. P. and Ullrich, R. C. 1989. Cloning and comparison of mating-type alleles of the basidiomyceteSchizophyllum commune. Mol. Gen. Genet.218: 72–77.Google Scholar
  21. Gold, S. E. Bakkeren, G., Davies, J. E. and Kronstad, J. W. 1994. Three selectable markers for transformation ofUstilago maydis. Gene142: 225–230.Google Scholar
  22. Holden, D. W., Wang, J. and Leong, S. A. 1988. DNA-mediated transformation ofUstilago hordei andUstilago nigra. Physiol. Mol. Plant. Pathol.33: 235–239.Google Scholar
  23. Horton, J. S. and Raper, C. A. 1991. A mushroom-inducing DNA sequence isolated from the basidiomycete,Schizophyllum commune. Genetics129: 707–716.Google Scholar
  24. Hynes, M. J. 1989. Complementation of anAspergillus nidulans mutation by a gene from the basidiomyceteCoprinus cinereus. Exp. Mycol.13: 196–198.Google Scholar
  25. Keon, J. P. R., White, G. A. and Hargreaves, J. A. 1991. Isolation, characterization and sequence analysis of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen,Ustilago maydis. Curr. Genet.19: 475–481.Google Scholar
  26. Kinal, H., Park, C-M and Bruenn, J. 1993. A family ofUstilago maydis expression vectors: new selectable markers and promoters. Gene127: 151–152.Google Scholar
  27. Kronstad, J. W., Wang, J., Covert, S. F., Holden, D. W., McKnight, G. L. and Leong, S. A. 1989. Isolation of metabolic genes and demonstration of gene disruption in the phytopathogenic fungusUstilago maydis. Gene79: 97–106.Google Scholar
  28. Kües, U., Richardson, W. V. J., Tymon, A. M., Mutasa, E. S., Göttgens, B., Gaubatz, S., Gregoriades, A. and Casselton, L. A. 1992. The combination of dissimilar alleles of the and gene complexes, whose proteins contain homeodomain motifs, determines sexual development in the mushroomCoprinus cinereus. Genes Dev.6: 568–577.Google Scholar
  29. Labarère, J. and Noël, T. 1992. Mating type switching in the tetrapolar basidiomyceteAgrocybe aegerita. Genetics131: 307–319.Google Scholar
  30. Labarère, J., Noël, T., Iraçabal, B. and Maleville, H. 1993. Breeding strategies and molecular biology in heterothallic basidiomycetes. Rept. Tottori Mycol. Inst.31: 168–187.Google Scholar
  31. Li, A., Altosaar, I., Heath, M. C. and Horgen, P. A. 1993. Transient expression of the beta-glucuronidase gene delivered into urediniospores ofUromyces appendiculatus by particle bombardment. Can. J. Plant Pathol.15: 1–6.Google Scholar
  32. Marmeisse, R., Gay, G., Debaud, J. C. and Casselton, L. A. 1992. Genetic transformation of the symbiotic basidiomycete fungusHebeloma cylindrosporum. Curr. Genet.22: 41–45.Google Scholar
  33. Meinhardt, F. and Esser, K. 1981. Genetic studies of the basidiomyceteAgrocybe aegerita. 2. Genetic control of fruit body formation and its practical implications. Theor. Appl. Genet.60: 265–268.Google Scholar
  34. Mellon, F. M. Little, P. F. R. and Casselton, L. A. 1987. Gene cloning and transformation in the basidiomycete fungusCoprinus cinereus: isolation and expression of the isocitrate lyase gene (acu-7). Mol. Gen. Genet.210: 352–357.Google Scholar
  35. Mooibroek, H., Kuipers, A. G. J., Siestsma, J. H., Punt, P. J. and Wessels, J. G. H. 1990. Introduction of hygromycin B resistance intoSchizophyllum commune: preferential methylation of donor DNA. Mol. Gen. Genet.222: 41–48.Google Scholar
  36. Moulinier, T., Barroso, G. and Labarère, J. 1992. The mitochondrial genome of the basidiomyceteAgrocybe aegerita: molecular cloning, physical mapping and genes location. Curr. Genet.21: 499–505.Google Scholar
  37. Munoz-Rivas, A., Specht, C. A., Drummond, B. J. Froeliger, E. and Novotny, C. P. 1986. Transformation of the basidiomyceteSchizophyllum commune. Mol. Gen. Genet.250: 103–106.Google Scholar
  38. Mutasa, E. S., Tymon, A. M., Göttgens, B., Mellon, F. M., Little, P. F. R. and Casselton, L. A. 1990. Molecular organization of anA mating type factor of the basidiomycete fungusCoprinus cinereus. Curr. Genet.18: 223–229.Google Scholar
  39. Noël, T., Ho Huynh, T. D. and Labarère, J. 1991a. Genetic variability of the wild incompatibility alleles of the tetrapolar basidiomyceteAgrocybe aegerita. Theor. Appl. Genet.81: 745–751.Google Scholar
  40. Noël, T. and Labarère, J. 1994. Homologous transformation of the edible basidiomyceteAgrocybe aegerita with theURA1 gene: characterization of integrative events and of rearranged free plasmids in transformants. Curr. Genet.25: 432–437.Google Scholar
  41. Noël, T., Rochelle, P. and Labarère, J. 1991b. Genetic studies on the differentiation of fruit bodies from homokaryotic strains in the basidiomyceteAgrocybe aegerita. In: “Science and cultivation of edible fungi, vol. 1,” (ed. by Maher, M. J.), pp. 79–84. A. A. Balkema, Rotterdam.Google Scholar
  42. Noël, T., Simoneau, P. and Labarère, J. 1995. Heterologous transformation ofAgrocybe aegerita with a bacterial neomycin resistance gene fused to a fungal promoter-like DNA sequence. Theor. Appl. Genet. (in press).Google Scholar
  43. Peng, M., Lemke, P. A. and Singh, N. K. 1993. A nucleotide sequence involved in replicative transformation of a filamentous fungus. Curr. Genet.24: 114–121.Google Scholar
  44. Peng, M., Singh, N. A. and Lemke, P. A. 1992. Recovery of recombinant plasmids fromPleurotus ostreatus transformants. Curr. Genet.22: 53–59.Google Scholar
  45. Pukkila, P. J. and Casselton, L. A. 1991. Molecular genetics of the agaricCoprinus cinereus. In: “More gene manipulation in fungi,” (ed. by Bennett, J. W. and Lasure, L. L.), pp. 126–150. Academic Press, San Diego.Google Scholar
  46. Punt, P. J., Oliver, R. P., Dingemanse, M. A., Pouwels, P. H. and van den Hondel, C. A. M. J. J. 1987. Transformation ofAspergillus based on the hygromycin B resistance marker fromEscherichia coli. Gene56: 117–124.Google Scholar
  47. Randall, T., Rao, T. R. and Reddy, C. A. 1989. Use of shuttle vector for the transformation of the white rot basidiomycete,Phanerochaete chrysosporium. Biochem. Biophys. Res. Commun.161: 720–725.Google Scholar
  48. Randall, T. and Reddy, C. A. 1991. An improved transformation vector for the lignin-degrading white rot basidiomycetePhanerochaete chrysosporium. Gene103: 125–130.Google Scholar
  49. Randall, T., Reddy, C. A. and Boominathan, K. 1991. A novel extrachromosomally maintained transformation vector for the lignin-degrading basidiomycetePhanerochaete chrysosporium. J. Bacteriol.173: 776–782.Google Scholar
  50. Salvado, J. C. and Labarère, J. 1991. Isolation of transcripts preferentially expressed during fruit body primordia differentiation in the basidiomyceteAgrocybe aegerita. Curr. Genet.20: 205–210.Google Scholar
  51. Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schäfer, W., Martin, T., Herskowitz, I. and Kahmann, R. 1990. Theb alleles ofU. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell60: 295–306.Google Scholar
  52. Schuren, F. H. J., Harmsen, M. C. and Wessels, J. G. H. 1993. A homologous gene-reporter system for the basidiomyceteSchizophyllum commune based on internally deleted homologous genes. Mol. Gen. Genet.238: 91–96.Google Scholar
  53. Specht, C. A., Munoz-Rivas, A., Novotny, C. P. and Ullrich, R. 1988. Transformation ofSchizophyllum commune: an analysis of parameters for improving transformation frequencies. Exp. Mycol.12: 357–366.Google Scholar
  54. Specht, C. A., Stankis, M. M., Giasson, L., Novotny, C. P. and Ullrich, R. 1992. Functional analysis of the homeodomain-related proteins of the locus ofSchizophyllum commune. Proc. Natl. Acad. Sci. USA89: 7174–7178.Google Scholar
  55. Stankis, M. M., Specht, C. A., Yang, H., Giasson, L., Ullrich, R. C. and Novotny, C. P. 1992. The mating locus ofSchizophyllum commune encodes two dissimilar multiallelic homeodomain proteins. Proc. Natl. Acad. Sci. USA89: 7169–7173.Google Scholar
  56. Tien, M. 1989. Properties of ligninases fromPhanerochaete chrysosporium and their possible applications. CRC Crit. Rev. Microbiol.15: 141–168.Google Scholar
  57. Tsukuda, T., Bauchwitz, R. and Holloman, W. K. 1989. Isolation of theREC1 gene controlling recombination inUstilago maydis. Gene85: 335–341.Google Scholar
  58. Tsukuda, T., Carleton, S., Fotheringham, S. and Holloman, W. K. 1988. Isolation and characterization of an autonomously replicating sequence fromUstilago maydis. Mol. Cell. Biol.8: 3703–3709.Google Scholar
  59. Tymon, A. M., Kües, U., Richardson, W. V. J. and Casselton, L. A. 1992. A fungal mating type protein that regulates sexual and asexual development contains a POU-related domain. EMBO J.11: 1805–1813.Google Scholar
  60. Wang, J., Holden, D. W. and Leong, S. A. 1988. Gene transfer system for the phytopathogenic fungusUstilago maydis. Proc. Natl. Acad. Sci. USA.85: 865–869.Google Scholar
  61. Wessels, J. G. H. 1993. Wall growth, protein excretion and morphogenesis in fungi. New Phytol.123: 397–413.Google Scholar
  62. Wessels, J. G. H., de Vries, O. M. H. Asgeirsdottir, S. A., and Schuren, F. H. J. 1991. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies inSchizophyllum. Plant Cell3: 793–799.Google Scholar

Copyright information

© The Mycological Society of Japan 1995

Authors and Affiliations

  • Thierry Noël
    • 1
  • Jacques Labarère
    • 1
  1. 1.Laboratoire de Génétique Moléculaire et Amélioration des Champignons CultivésUniversité de Bordeaux II-INRA, C.R.A. de BordeauxVillenave d'Ornon CédexFrance

Personalised recommendations