, Volume 7, Issue 9, pp 567–581 | Cite as

Optimization of chromatographic separations by computer control

  • S. P. Cram
  • J. E. Leitner


A system for optimizing gas chromatographic separations by computer control in real time is described. The GC-CPU interface controls the high precision sampling valve, temperature controller, flow controller, programmable gain amplifier, and time base. Algorithms for data acquisition, data reduction, and control are outlined. The criteria for optimization of the experimental conditions are based on peak symmetry, resolution, and relative retention. This approach is compared to other modes of control such as precolumn techniques, serial column switching, recycling columns, and library file searching.


Analytical Chemistry Organic Chemistry Data Acquisition High Precision Chromatographic Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    “Quantitative Gas Chromatography — Fundamentals to Automation”, J. Gas Chromatog.5, 595–646 (1967).Google Scholar
  2. [2]
    “Computer Automation of Analytical Gas Chromatography”, J. Chromatog. Sci.7, 709–744 (1969).Google Scholar
  3. [3]
    “Chromatography and Computers ... An Economical Approach for Every Laboratory” J. Chromatog. Sci.9, 705–741 (1971), and J. Chromatog. Sci.10, 1–30 (1972).Google Scholar
  4. [4]
    “First International Symposium on Computer Chromatography and Associated Techniques”, Chromatographia5, 61–211 (1972).Google Scholar
  5. [5]
    Gill, J. M., J. Chromatog. Sci.7, 731 (1969).Google Scholar
  6. [6]
    Annino, R., andBullock, L. E., Adv. Chromatography 1973,A. Zlatkis, ed., University of Houston, Houston, Texas, 1973, p. 67.Google Scholar
  7. [7]
    Lorenz, L. J., Culp, R. A., andRogers, L. B., Anal. Chem.42, 979 (1970).Google Scholar
  8. [8]
    Grushka, E., Myers, M. N., andGiddings, J. C., Anal. Chem.42, 21 (1970).Google Scholar
  9. [9]
    Anderson, A. H., Gibb, T. C., andLittlewood, A. B., Anal. Chem.42, 434 (1970).Google Scholar
  10. [10]
    Kirmse, D. W., andWesterberg, A. W., Anal. Chem.43, 1035 (1971).Google Scholar
  11. [11]
    Glenn, T. H., andCram, S. P., J. Chromatog. Sci.8, 46 (1970).Google Scholar
  12. [12]
    Oberholtzer, J. E., Anal. Chem.39, 959 (1967).Google Scholar
  13. [13]
    Bowen, B. E., Cram, S. P., Leitner, J. E., andWade, R. L., Anal. Chem.45, 2185 (1973).Google Scholar
  14. [14]
    Culp, R. A., Lochmuller, C. H., Moreland, A. K., Swingle, R. S., andRogers, L. B., J. Chromatog. Sci.9, 6 (1971).Google Scholar
  15. [15]
    Goedert, M., andGuiochon, G., Anal. Chem.45, 1188 (1973).Google Scholar
  16. [16]
    Oberholtzer, J. E., andRogers, L. B., Anal. Chem.41, 1234 (1969).Google Scholar
  17. [17]
    Swingle, R. S., andRogers, L. B., Anal. Chem.43, 810 (1971).Google Scholar
  18. [18]
    Burke, M. F., andThurman, R. G., J. Chromatog. Sci.8, 38 (1970).Google Scholar
  19. [19]
    Thurman, R. G., Mueller, K. A., andBurke, M. F., J. Chromatog. Sci.9, 77 (1971).Google Scholar
  20. [20]
    Demming, S. N., andKing, P. G., Research/Development25 (5), 22 (1974).Google Scholar
  21. [21]
    Lawrence Radiation Laboratory, Analytical Chemistry Section Progress Report,J. E. Harrar, ed., University of California, Livermore, Ca., 1967, p. 4.Google Scholar
  22. [22]
    Root, J. W., Lee, E. K. C., andRowland, F. W., Science143, 676 (1964).Google Scholar
  23. [23]
    Guiochon, G., Ecole Polytechnique, Paris, France, personal communication, 1972.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn, Verlagschesellschaft mbH 1974

Authors and Affiliations

  • S. P. Cram
    • 1
  • J. E. Leitner
    • 2
  1. 1.Analytical Chemistry DivisionNational Bureau of StandardsWashington, D.C.USA
  2. 2.Shoreline Dredging and Constr. Co.JacksonvilleUSA

Personalised recommendations