Chromatographia

, Volume 39, Issue 9–10, pp 543–548 | Cite as

Isoelectric focusing of proteins in capillary electrophoresis with pressure-driven mobilization

  • T. -L. Huang
  • P. C. H. Shieh
  • N. Cooke
Originals

Summary

An isoelectric focusing (IEF) method in the capillary format with wide linear pH range (pH 3–10) and high resolution has been developed for separations of proteins. The methodology involves applying pressure and voltage simultaneously during the mobilization step of the IEF process, to elute the focused protein zones for detection. Capillary isoelectric focusing (CIEF) is performed in neutral, hydrophilic, coated capillaries of 50 μm I.D., using various concentrations of methyl cellulose to reduce the distortion of focused zone by parabolic laminar flow. A linear relationship between the retention time and isoelectric point (pI) of protein standards was observed. The high resolution of this technique was demonstrated by the separation of hemoglobin variants F and A with pI difference of 0.05 pH units, and by the resolution of the isoforms of an anti-carcinoembryonic antigen monoclonal antibody.

Key Words

Capillary isoelectric focusing Pressure mobilization Protein separation Hemoglobin variants Monoclonal antibody 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Hjertén, M.-D. Zhu, J. Chromatogr.346, 265 (1985).Google Scholar
  2. [2]
    S. Hjertén, J. Chromatogr.347, 191 (1985).Google Scholar
  3. [3]
    S. Hjertén, J.-L. Liao, K. Yao, J. Chromatogr.387, 127 (1987).Google Scholar
  4. [4]
    S. Hjertén, E. Karin, F. Kilar, J.-L. Liao, J. C. Chen, C. Siebert, M.-D. Zhu, J. Chromatogr.403, 47 (1987).Google Scholar
  5. [5]
    F. Kilar, S. Hjertén, J. Chromatogr.480, 351 (1989).Google Scholar
  6. [6]
    F. Kilar, S. Hjertén, Electrophoresis10, 23 (1989).Google Scholar
  7. [7]
    J. R. Mazzeo, I. S. Krull, Anal. Chem.63, 2852 (1991).Google Scholar
  8. [8]
    J. R. Mazzeo, I. S. Krull, J. Microcol. Sep.4, 29 (1992).Google Scholar
  9. [9]
    W. Thormann, J. Caslavska, S. Molteni, J. Chmelik, J. Chromatogr.589, 321 (1992).Google Scholar
  10. [10]
    S. Molteni, W. Thormann, J. Chromatogr.638, 187 (1993).Google Scholar
  11. [11]
    S.-M. Chen, J. E. Wiktorowicz, Anal. Biochem.206, 84, (1992).Google Scholar
  12. [12]
    J. Wu, J. Pawliszyn, Anal. Chem.64, 2934 (1992).Google Scholar
  13. [13]
    J. Wu, J. Pawliszyn, Electrophoresis14, 469 (1993).Google Scholar
  14. [14]
    S. Hjertén, A. F. Kemi, Band13, 151 (1958).Google Scholar
  15. [15]
    X.-Y. Yao, F. E. Regnier, J. Chromatogr.632, 185 (1993).Google Scholar
  16. [16]
    M. Zhu, T. Wehr, V. Levi, R. Rodriguez, K. Shiffer, Z. A. Cao, J. Chromatogr.652, 119 (1993).Google Scholar
  17. [17]
    C. A. Bolger, M. Zhu, R. Rodriguez, T. Wehr, J. Liq. Chromatogr.14, 895 (1991).Google Scholar
  18. [18]
    Data from the supplier, Isolab, Akron, OH.Google Scholar
  19. [19]
    M. Zhu, R. Rodriguez, T. Wehr, J. Chromatogr.559, 479 (1991).Google Scholar
  20. [20]
    T. Wehr, M. Zhu, R. Rodriguez, D. Burke, K. Duncan, Am. Biotechnol. Lab.,8, 22 (1990).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1994

Authors and Affiliations

  • T. -L. Huang
    • 1
  • P. C. H. Shieh
    • 1
  • N. Cooke
    • 1
  1. 1.Beckman Instruments, Inc.FullertonUSA

Personalised recommendations