, Volume 42, Issue 11–12, pp 653–659 | Cite as

Structure-retention relationships in the gas chromatography of N,N-dialkylhydrazones

  • Z. Király
  • T. Körtvélyesi
  • L. Seres
  • M. Görgényi


N,N-Dialkylhydrazones [DAHs; R1R2C=1N-2N(R3)2] were prepared and their Kováts retention indices determined on 100% dimethylpolysiloxane (HP-1) and 5% diphenyl and 95% dimethylpolysiloxane (HP-5) stationary phases. The physico-chemical and retention behaviour of the DAHs depend greatly on whether R2=H or an alkyl group. A similar difference is observed in the alkane and oxo homomorphic factors of DAHs formed from aldehydes or ketones. The difference is explained on the basis of NMR and quantum-chemical results by intramolecular interactions between R2 and the lone pair of the2N atom. A single linear equation is suitable for prediction of retention indices if parameters are introduced representing resonance structure (bond angle and electron density) besidesIoxo or the van der Waals' surface.

Key Words

Gas chromatography Dialkylhydrazones Kováts retention indices Structure-retention relationships 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Fedelli, M. Cirimele, J. Chromatogr.15, 435 (1964).CrossRefGoogle Scholar
  2. [2]
    Y. Hoshika, Y. Takata, J. Chromatogr.120, 379 (1976).CrossRefGoogle Scholar
  3. [3]
    H. Van Langenhove, M. Van Acker, N. M. Schamp, Analyst108, 329 (1983).CrossRefGoogle Scholar
  4. [4]
    É. János, J. Balla, E. Tyihák, R. Gáborjányi, J. Chromatogr.191, 239 (1980).CrossRefGoogle Scholar
  5. [5]
    A. B. Attygalle, A. Zlatkis, H. S. Middledtich, J. Chromatogr.472, 284 (1989).CrossRefGoogle Scholar
  6. [6]
    R. B. Mitra, G. B. Reddy, Syntheses, 694 (1989).Google Scholar
  7. [7]
    C. A. McDaniel, R. W. Howard, J. Chem. Acol.11, 303 (1985).Google Scholar
  8. [8]
    J. Rigaudy, S. P. Klesney (Editors), Nomenclature of Organic Chemistry, IUPAC Organic Chemistry Division, Pergamon Press, Oxford, 1976, p. 476.Google Scholar
  9. [9]
    G. J. Karabatsos, J. A. Taller, Tetrahedron24, 3923 (1968).CrossRefGoogle Scholar
  10. [10]
    E. Kováts, Helv. Chim. Acta41, 1915 (1958).CrossRefGoogle Scholar
  11. [11]
    M. Görgényi, H. Van Langenhove, Z. Király, J. Chromatogr.693, 181 (1995).CrossRefGoogle Scholar
  12. [12]
    G. S. Goldin, S. N. Ciomo, G. S. Sor, Zh. Org. Khim.6, 754 (1970).Google Scholar
  13. [13]
    R. H. Wiley, S. C. Slaymaker, H. Kraus, J. Org. Chem.22, 201 (1957).Google Scholar
  14. [14]
    D. M. Lemal, F. Menger, E. Coats, J. Am. Chem. Soc.86, 2395 (1964).CrossRefGoogle Scholar
  15. [15]
    M. Görgényi, L. Seres, J. C. S. Faraday Trans.87, 1827 (1991).CrossRefGoogle Scholar
  16. [16]
    M. Görgényi, Z. Fekete, L. Seres, Chromatographia27, 581 (1989).CrossRefGoogle Scholar
  17. [17]
    L. F. Clarke, F. O'Sullivan, A. F. Hagarty, J. C. S. Perkin Trans.2, 1649 (1991).CrossRefGoogle Scholar
  18. [18]
    A. M. Matukuma, in “Gas Chromatography 1968” Ed. C. O. A. Harburn, Inst. Petroleum, London, 1969, pp. 55–72.Google Scholar
  19. [19]
    M. J. S. Dewar, W. Thiel, J. Am. Chem. Soc.99, 4899 (1977).CrossRefGoogle Scholar
  20. [20]a)
    Gy. Tasi, I. Pálinko, J. Halász, G. Náray-Szabó, Semiempirical Quantum Chemical Calculations on Microcomputers, PcMol/486 Version 3.11; CheMicro Ltd, Budapest, 1992.Google Scholar
  21. [20]b)
    J. J. P. Stewart, MOPAC 6.1, QCPE program 455, 1991.Google Scholar
  22. [21]
    T. Körtvélyesi, M. Görgényi, L. Seres, Chromatographia41, 282 (1995).CrossRefGoogle Scholar
  23. [22]
    P. W. Atkins, Physical Chemistry, Oxford University Press, 1994.Google Scholar
  24. [23]
    H. Lamparczyk, A. Radecki, Chromatographia18, 615 (1984).CrossRefGoogle Scholar
  25. [24]
    R. C. Weast, (Editor), Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 60th Ed. 1979.Google Scholar
  26. [25]
    J. P. Gouesnard, G. J. Martin, Org. Magn. Reson.12, 263 (1979).CrossRefGoogle Scholar
  27. [26]
    A. Bondi, J. Phys. Chem.68, 441 (1964).CrossRefGoogle Scholar
  28. [27]
    E. Hirsch, Anal. Chem.42, 1326 (1970).CrossRefGoogle Scholar
  29. [28]
    F. Saura Calixto, A. Garcia Raso, Chromatographia14, 596 (1981).CrossRefGoogle Scholar
  30. [29]
    G. Schomburg, J. Chromatogr.14, 157 (1964).CrossRefGoogle Scholar
  31. [30]
    L. Soják, J. Krupcik, K. Tresarik, J. Janák, J. Chromatogr.65, 93 (1972).CrossRefGoogle Scholar
  32. [31]
    T. F. Woloszyn, P. Jurs, Anal. Chem.65, 582 (1993).CrossRefGoogle Scholar
  33. [32]
    E. Kováts, Adv. Chromatogr.46, 2708 (1963).Google Scholar
  34. [33]
    R. H. Rohrbaugh, P. C. Jurs, Anal. Chem.57, 2770 (1985).CrossRefGoogle Scholar
  35. [34]
    K. Héberger, Chromatographia25, 725 (1988).CrossRefGoogle Scholar
  36. [35]
    G. Schomburg, J. Chromatogr.23, 1 (1966).CrossRefGoogle Scholar
  37. [36]
    G. Schomburg, J. Chromatogr.23 18 (1966).CrossRefGoogle Scholar
  38. [37]
    L. Sojak, J. Hrivnák, P. Majer, J. Janák, Anal. Chem.45, 293 (1973).CrossRefGoogle Scholar
  39. [38]
    G. Schomburg, G. Dielmann, J. Chromatogr. Sci.11, 151 (1973).CrossRefGoogle Scholar
  40. [39]
    R. Ter Heide, J. Chromatogr.129, 143 (1976).CrossRefGoogle Scholar
  41. [40]
    G. Anders, K. Anders, W. Engewald, Chromatographia20, 83 (1985).CrossRefGoogle Scholar
  42. [41]
    J. Oszczapowicz, J. Osek, E. Dolecka, J. Chromatogr.315, 95 (1984).CrossRefGoogle Scholar
  43. [42]
    J. Oszczapowicz, K. Ciszkowski, J. Osek, J. Chromatogr.362, 383 (1986).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1996

Authors and Affiliations

  • Z. Király
    • 1
  • T. Körtvélyesi
    • 1
  • L. Seres
    • 2
  • M. Görgényi
    • 1
  1. 1.Institute of Physical ChemistryUniversity of SzegedSzegedHungary
  2. 2.Gy. J. Teachers' Training CollegeSzegedHungary

Personalised recommendations