Influence of Pacific Sea surface temperatures on seasonal precipitation over the western plateau of the United States

  • J. D. Sheaffer
  • E. R. Reiter


Analysis of the long-term variability of interseasonal correlations between various climatological data for the western United States indicates that the transient aspects of these correlations are linked to trends in Sea Surface Temperatures (SST) in the Pacific Ocean. Stratifying climatological data by the dominant modes of Pacific SST anomalies seems to enhance interseasonal correlations between various climate parameters for the western plateau area. For example, when warm SSTs occur in the equatorial eastern Pacific, summer precipitation anomalies in peripheral areas of the plateau are highly correlated with thermal and precipitation anomalies over the plateau during the prior spring. When we selectively examine portions of the data set representing extreme SST anomaly conditions, the inferred associations become systematically stronger. The observations suggest that much of the variance typically encountered in computing interseasonal correlation statistics for climatological data may be due to variable influences associated with ocean temperature anomalies in remote locations. Although no comprehensive explanation is offered for the observations, there is a general consistency with prior studies of the relationships between various SST anomalies and weather trends in western North America. With additional refinement and extended scope these results may provide the basis for improved forecasts of seasonal weather trends, both in the western United States and elsewhere.


Precipitation Anomaly Climatological Data Anomaly Condition Warm SSTs Extended Scope 

Der Einfluß von Oberflächentemperaturen des Pazifiks auf die jahreszeitlichen Niederschläge über dem westlichen Plateau der Vereinigten Staaten


Die Analyse der allmählichen Veränderlichkeit der Korrelationen zwischen meteorologischen Daten aus verschiedenen Jahreszeiten zeigen über den westlichen Vereinigten Staaten, daß ein Zusammenhang zwischen diesen Änderungen und den Tendenzen in den Meeresoberflächentemperaturen, im Pazifik besteht. Wenn klimatologische Daten je nach den dominierenden Feldern der Meerestemperaturen eingeordnet werden, verbessern sich die Korrelationen, welche verschiedene Jahreszeiten überspannen. So sind zum Beispiel bei warmen Meerestemperaturanomalien im äquatorialen Ostpazifik die sommerlichen Niederschlagsanomalien in der Umgebung des Plateaus stark mit den Temperatur- und Niederschlagsanomalien über dem Plateau im vorhergehenden Frühling korreliert. Wird jene Untergruppe der Daten untersucht, welche extremen Meerestemperaturanomalien entspricht, so werden die entsprechenden Korrelationsbeziehungen noch stärker. Diese Beobachtungen deuten an, daß ein Großteil der Varianz, die für gewöhnlich in Korrelationen klimatologischer Daten zwisehen verschiedenen Jahreszeiten auftritt, auf Einflüsse von Meerestemperaturanomalien in entfernten Gebieten zurückgeführt werden kann. Obzwar keine umfassende Erklärung für diese Beobachtungstatsache angeboten wird, besteht eine allgemeine Konsistenz mit früheren Studien in den Zusammenhängen zwischen Meerestemperaturanomalien und Witterungstendenzen im westlichen Nordamerika. Verbesserte und erweiterte Studien dieser Art können die Basis für die Langfristprognose jahreszeitlicher Witterungstendenzen in den Vereinigten Staaten und anderswo bilden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tang, M., Reiter, E. R.: Plateau Monsoons of the Northern Hemisphere: A Comparison Between North America and Tibet. Mon. Weath. Rev.112, 617–637 (1984).Google Scholar
  2. 2.
    Reiter, E. R., Tang, M.: Plateau Effects on Diurnal Circulation Patterns. Mon. Weath. Rev.112, 638–651 (1984).Google Scholar
  3. 3.
    Dickson, R. R.: Eurasian Snow Cover Versus Indian Monsoon Rainfall — An Extension of the Hahn-Shukla Results. J. Climate Appl. Met.23, 171–173 (1984).Google Scholar
  4. 4.
    Hahn, D. G., Shukla, J.: An Apparent Relationship Between Eurasian Snow Cover and Indian Monsoon Rainfall. J. Atmos. Sci.33, 2461–2462 (1976).Google Scholar
  5. 5.
    Nicholls, N.: The Stability of Empirical Long-Range Forecast Techniques: A Case Study. J. Climate Appl. Met.23, 143–147 (1984).Google Scholar
  6. 6.
    Namias, J.: Multiple Causes of the North American Abnormal Winter 1976–77. Mon. Weath. Rev.106, 279–295 (1978).Google Scholar
  7. 7.
    Barnett, T. P., Preisendorfer, R. W.: Multifield Analog Prediction of Short-Term Climate Fluctuations Using a Climate State Vector. J. Atmos. Sci.35, 1771–1787 (1978).Google Scholar
  8. 8.
    Wallace, J. M., Gutzler, D. S.: Teleconnections in the Geopotential Height Field During the Northern Hemisphere Winter. Mon. Weath. Rev.109, 784–812 (1981).Google Scholar
  9. 9.
    Reiter, E. R.: Teleconnections with Tropical Precipitation Surges. J. Atmos. Sci.40, 1631–1647 (1983).Google Scholar
  10. 10.
    Julian, P. R., Chervin, R. M.: A Study of the Southern Oscillation and Walker Circulation Phenomenon. J. Atmos. Sci.106, 1433–1451 (1978).Google Scholar
  11. 11.
    Rasmusson, E. M., Carpenter, T. H.: Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon. Weath. Rev.110, 354–384 (1982).Google Scholar
  12. 12.
    Angell, J. K.: Comparison of Variations in Atmospheric Quantities with Sea Surface Temperature Variations in the Equatorial Eastern Pacific. Mon. Weath. Rev.109, 230–243 (1981).Google Scholar
  13. 13.
    Pan, Y. H., Oort, A. H.: Global Climate Variations Connected with Sea Surface Temperature Anomalies in the Eastern Equatorial Pacific Ocean for the 1958–73 Period. Mon. Weath. Rev.111, 1244–1258 (1983).Google Scholar
  14. 14.
    Rasmusson, E. M.: El Niño: The Ocean/Atmosphere Connection. Oceanus27, 5–12 (1984).Google Scholar
  15. 15.
    Rasmusson, E. M., Wallace, J. M.: Meteorological Aspects of the El Niño/Southern Oscillation. Science222, 1195–1202 (1983).Google Scholar
  16. 16.
    Horel, J. D., Wallace, J. M.: Planetary-Scale Atmospheric Phenomena Associated with the Southern Oscillation. Mon. Weath. Rev.109, 813–829 (1981).Google Scholar
  17. 17.
    Weare, B. C., Navato, A. R., Newell, R. E.: Empirical Orthogonal Analysis of Pacific Ocean Surface Temperatures. J. Phys. Oceanogr.6, 671–678 (1976).Google Scholar
  18. 18.
    Hsiung, J., Newell, R. E.: The Principal Nonseasonal Modes of Variation of Global Sea Surface Temperature. J. Phys. Oceanogr.13, 1957–1967 (1983).Google Scholar
  19. 19.
    Namias, J.: Persistence of U.S. Seasonal Temperatures up to One Year. Mon. Weath. Rev.106, 1557–1567 (1978).Google Scholar
  20. 20.
    Davis, R. E.: Predictability of Sea-Surface Temperatures and Sea-Level Pressure Anomalies over the North Pacific Ocean. J. Phys. Oceanogr.6, 249–266 (1976).Google Scholar
  21. 21.
    Livezey, R. E., Chen, W. Y.: Statistical Field Significance and Its Determination by Monte Carlo Techniques. Mon. Weath. Rev.111, 46–50 (1983).Google Scholar
  22. 22.
    Whittaker, L. M., Horn, L. H.: Geographical and Seasonal Distribution of North American Cyclogenesis (1958–1977). Mon. Weath. Rev.109, 2312–2322 (1981).Google Scholar
  23. 23.
    Rodgers, J. C.: Spatial Variability of Seasonal Sea Level Pressures and 500 mb Height Anomalies. Mon. Weath. Rev.109, 2093–2106 (1981).Google Scholar
  24. 24.
    Baker-Blocker, A., Bouwer, S. D.: El Niño: Evidence for Climatic Nondeterminism? Accepted for Publication in Arch. Met. Geoph. Biokl., Ser. B (1985).Google Scholar
  25. 25.
    Middleton, J. W.: A Cross-Spectral Study of the Spatial Relationships in the North Pacific Sea Surface Temperature Anomaly Field. Environmental Research Paper No. 23. Colorado State University, Fort Collins, CO (1980).Google Scholar
  26. 26.
    Chen, W. Y.: Fluctuations in Northern Hemisphere 700 mb Height Field Associated with the Southern Oscillation. Mon. Weath. Rev.110, 808–823 (1982).Google Scholar
  27. 27.
    Namias, J.: Anatomy of Great Plains Protracted Heat Waves (especially the 1980 U.S. summer drought). Mon. Weath. Rev.110, 839–851 (1982).Google Scholar
  28. 28.
    Erickson, C. O.: Hemispheric Anomalies of 700 mb Height and Sea Level Pressure Related to Mean Summer Temperatures Over the United States. Mon. Weath. Rev.111, 545–561 (1983).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. D. Sheaffer
    • 1
  • E. R. Reiter
    • 1
  1. 1.Department of Atmospheric ScienceColorado State UniversityFt. CollinsUSA

Personalised recommendations