Advertisement

The dynamical response of the lower atmosphere to upper atmosphere forcing and the sun-weather problem

  • A. F. C. Bridger
  • D. E. Stevens
Article

Summary

A time-dependent, primitive-equation numerical model is used to test the hypothesis that solar variations induce changes in the distributions of basic state variables at high levels in the atmosphere, and thus induce changes in planetary-scale wave structure at lower atmospheric levels. This mechanism was proposed to explain apparent atmospheric responses to solar activity. The changes are brought about in the model by a diabatic heat source, which is taken to be a simple representation of Joule dissipative heating. Lower atmospheric wave structure is found to be insensitive to solar-induced changes in the upper atmosphere. Such changes as do occur are limited to within 25 to 40 km below the level of maximum heating, and are also quite short-lived.

Keywords

Heat Source Solar Activity Wave Structure Simple Representation Lower Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die dynamische Reaktion der unteren Atmosphäre auf Einwirkungen der oberen Atmosphäre und das Problem solarer Einflüsse auf das Wetter

Zusammenfassung

Ein zeitabhängiges, auf den Grundgleichungen basierendes, numerisches Modell wurde verwendet, um die Hypothese zu prüfen, daß solare Veränderlichkeit eine Änderung in den Grundvariablen der oberen Atmosphäre und somit in der planetaren Langwellenstruktur der unteren Atmosphäre hervorrufen kann. Dieser Mechanismus wurde zur Erklärung einer offensichtlichen, atmosphärischen Reaktion auf solare Schwankungen herangezogen. Im Modell wird diese Veränderlichkeit durch eine diabatische Wärmequelle hervorgerufen, welche als eine einfache Repräsentation der Jouleschen Dissipationserwärmung angenommen wird. Die Langwellenstruktur der unteren Atmosphäre zeigte sich als unbeeinflußbar durch sonneninduzierte Vorgänge in der oberen Atmosphäre. Tatsächlich auftretende Veränderungen sind auf eine Distanz von 25 bis 40 km unterhalb des Niveaus maximaler Erwärmung beschränkt und sind von nur kurzer Lebensdauer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banks, P. M.: Observations of Joule and Particle Heating in the Auroral Zone. J. Atmos. Terr. Phys.39, 179–193 (1977).CrossRefGoogle Scholar
  2. 2.
    Banks, P. M.: Joule Heating in the High-Latitude Mesosphere. J. Geophys. Res.84, 6709–6712 (1979).Google Scholar
  3. 3.
    Bridger, A. F. C.: Wave-Mean Flow Interactions and Solar-Weather Effects. Ph.D. thesis, CSU Atmos. Sci. paper No. 334 (1981).Google Scholar
  4. 4.
    Bridger, A. F. C., Stevens, D. E.: Numerical Modeling of the Stratospheric Sudden Warming: Some Sensitivity Studies. J. Atmos. Sci.39, 666–679 (1982).CrossRefGoogle Scholar
  5. 5.
    Butchart, N., Clough, S. A., Palmer, T. N., Trevelyan, P. N.: Simulations of an Observed Stratospheric Warming With Quasi-Geostrophic Refractive Index as a Model Diagnostic. Quart. J. R. Met. Soc.108, 475–502 (1982).CrossRefGoogle Scholar
  6. 6.
    Geller, M. A., Alpert, J. C.: Planetary Wave Coupling Between the Troposphere and the Middle Atmosphere as a Possible Sun-Weather Mechanism. J. Atmos. Sci.37, 1197–1215 (1980).CrossRefGoogle Scholar
  7. 7.
    Herman, J. R., Goldberg, R. A.: Sun, Weather, and Climate. NASA publication No. SP-426 (1978).Google Scholar
  8. 8.
    Hicks, J. E., Justus, C. G.: Response of winds in the 90- to 140-km Altitude Region to Variations in Solar Activity. J. Geophys. Res.75, 5565–5570 (1970).Google Scholar
  9. 9.
    Hines, C. O.: A Possible Mechanism for the Production of Sun-Weather Correlations. J. Atmos. Sci.31, 589–591 (1974).CrossRefGoogle Scholar
  10. 10.
    Holton, J. R.: A Semi-Spectral Numerical Model for Wave-Mean Flow Interactions in the Stratosphere: Application to Sudden Stratospheric Warmings. J. Atmos. Sci.33, 1639–1649 (1976).CrossRefGoogle Scholar
  11. 11.
    Jacchia, L. G.: Variations in the Earth's Upper Atmosphere as Revealed by Satellite Drag. Rev. Mod. Phys.35, 973–991 (1963).CrossRefGoogle Scholar
  12. 12.
    King, J. W., Stater, A. J., Stevens, A. D., Smith, P. A., Willis, D. M.: Large-Amplitude Standing Planetary Waves Induced in the Troposphere by the Sun. J. Atmos. Terr. Phys.34, 1357–1367 (1977).CrossRefGoogle Scholar
  13. 13.
    Lin, B.-D.: The Behavior of Winter Stationary Planetary Waves Forced by Topography and Diabatic Heating. J. Atmos. Sci.39, 1206–1226 (1982).CrossRefGoogle Scholar
  14. 14.
    Lindzen, R. S., Hong, S.-S.: Effects of Mean Winds and Horizontal Temperature Gradients on Solar and Lunar Semidiurnal Tides in the Atmosphere. J. Atmos. Sci.31, 1420–1446 (1974).Google Scholar
  15. 15.
    Matsuno, T.: Vertical Propagation of Stationary Planetary Waves in the Winter Northern Hemisphere. J. Atmos. Sci.27, 871–883 (1970).CrossRefGoogle Scholar
  16. 16.
    Matsuno, T.: A Dynamical Model of the Stratospheric Sudden Warming. J. Atmos. Sci.28, 1479–1494 (1971).CrossRefGoogle Scholar
  17. 17.
    Nastrom, G. D., Belmont, A. D.: Preliminary Reports on the 27 Day Solar Rotation Variation in Stratospheric Zonal Winds. Geophys. Res. Lett.5, 665–668 (1978).Google Scholar
  18. 18.
    Palmer, N. T.: Aspects of Stratospheric Sudden Warmings Studied from a Transformed Eulerian-Mean Viewpoint. J. Geophys. Res.86, 9679–9687 (1981).Google Scholar
  19. 19.
    Ramakrishna, S., Seshamani, R.: The Effect of Solar Activity on Temperatures in the Equatorial Mesosphere. J. Atmos. Terr. Phys.35, 1631–1641 (1973).CrossRefGoogle Scholar
  20. 20.
    Ramakrishna, S., Seshamani, R.: Day-Night Dependence of Geomagnetic Activity Effects on Mesospheric Temperature. J. Geophys. Res.81, 6173–6176 (1976).Google Scholar
  21. 21.
    Schoeberl, M. R., Geller, M. A.: The Structure of Stationary Planetary Waves in Winter in Relation to the Polar Night Jet Intensity. Geophys. Res. Lett.3, 177–180 (1976).Google Scholar
  22. 22.
    Schuurmans, C. J. E.: Effects of Solar Flares on the Atmospheric Circulation. Solar-Terrestrial Influences on Weather and Climate, pp. 105–118. D. Reidel 1979.Google Scholar
  23. 23.
    Simmons, A. J.: Planetary-Scale Disturbances in the Polar Winter Stratosphere. Quart. J. R. Met. Soc.100, 76–108 (1974).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. F. C. Bridger
    • 1
  • D. E. Stevens
    • 2
  1. 1.Department of MeteorologyMcGill UniversityMontrealCanada
  2. 2.Department of Atmospheric ScienceColorado State UniversityFort CollinsUSA

Personalised recommendations