Advertisement

Journal of Fusion Energy

, Volume 15, Issue 3–4, pp 163–167 | Cite as

Recent progress on the Tokamak Fusion Test Reactor

  • D. M. Meade
Article

Abstract

The deuterium-tritium (D-T) experiments on the Tokamak Fusion Test Reactor (TFTR) have yielded unique information on the confinement, heating and alpha particle physics of reactor scale D-T plasmas as well as the first experience with tritium handling and D-T neutron activation in an experimental environment. The D-T plasmas produced and studied in TFTR have peak fusion power of 10.7 MW with central fusion power densities of 2.8 MWm−3 which is similar to the 1.7 MWm−3 fusion power densities projected for 1,500 MW operation of the International Thermonuclear Experimental Reactor (ITER). Detailed alpha particle measurements have confirmed alpha confinement and heating of the D-T plasma by alpha particles as expected. Reversed shear, highli and internal barrier advanced tokamak operating modes have been produced in TFTR which have the potential to double the fusion power to ∼20 MW which would also allow the study of alpha particle effects under conditions very similar to those projected for ITER. TFTR is also investigating two new innovations, alpha channeling and controlled transport barriers, which have the potential to significantly improve the standard advanced tokamak.

Key Words

Tokamak Fusion Test Reactor deuterium-tritium D-T plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. M. McGuireet al. (1995).Phys. Plasmas 2, 2176.CrossRefGoogle Scholar
  2. 2.
    The JET Team (1992).Nucl. Fusion 32, 187.Google Scholar
  3. 3.
    S. J. Zwebenet al. (1995).Nucl. Fusion 35, 893.CrossRefGoogle Scholar
  4. 4.
    R. K. Fisheret al. (1995).Phys. Rev. Lett. 75, 846.CrossRefPubMedGoogle Scholar
  5. 5.
    G. R. McKeeet al. (1995).Phys. Rev. Lett. 75, 649.CrossRefPubMedGoogle Scholar
  6. 6.
    B. Strattonet al. (1996). PPPL Report 3180,Nucl. Fusion (submitted).Google Scholar
  7. 7.
    G. Tayloret al. (1996).Phys. Rev. Lett. 76, 2722.CrossRefPubMedGoogle Scholar
  8. 8.
    F. M. Levintonet al. (1995).Phys. Rev. Lett. 75, 4417.CrossRefPubMedGoogle Scholar
  9. 9.
    E. J. Straitet al. (1995).Phys. Rev. Lett. 75, 4421.CrossRefPubMedGoogle Scholar
  10. 10.
    E. J. Synakowskiet al. (1995).Phys. Rev. Lett. 75, 3689.CrossRefPubMedGoogle Scholar
  11. 11.
    E. Mazzucatoet al. (1996).Phys. Rev. Lett. (submitted).Google Scholar
  12. 12.
    B. LeBlancet al. (1995).Phys. Plasmas 3, 741.CrossRefGoogle Scholar
  13. 13.
    N. J. Fischet al. (1992).Phys. Rev. Lett. 69, 612.CrossRefPubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • D. M. Meade
    • 1
  1. 1.Princeton Plasma Physics LaboratoryPrinceton

Personalised recommendations