Advertisement

Mathematical Notes

, Volume 56, Issue 6, pp 1271–1282 | Cite as

On the maximalC*-algebra of zeros of completely positive mapping and on the boundary of a dynamic semigroup

  • A. M. Chebotarev
Article

Keywords

Positive Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Chebotarev, “On the sufficient conditions for a minimal dynamic semigroup to be conservative,”Mat. Zametki,52, No. 4, 112–127 (1992).Google Scholar
  2. 2.
    B. V. Bhat and K. R. Parthatharathy,Markov dilations of nonconservative dynamic semigroups and quantum boundary theory, Preprint ISI. New Delhi (1993).Google Scholar
  3. 3.
    W. F. Stinespring, “Positive functions onC *-algebras,”Proc. Am. Math. Soc.,6, No. 2, 221–218 (1955).Google Scholar
  4. 4.
    K. Kraus,Annals Physics (New York),64, 311–331 (1971).Google Scholar
  5. 5.
    E. H. Leib and M. B. Ruskai, “Some operator inequalities of Schwartz type”,Adv. Math.,12, 269–273 (1974).Google Scholar
  6. 6.
    M. A. Neimark,Normed Algebras, Walter-Woordhoff (1972).Google Scholar
  7. 7.
    A. M. Chebotarev, “The necessary and sufficient conditions for dynamic semigroups to be conservative,” in:Modern Problems of Mathematics. New Advances [in Russian], Vol. 36, VINITI, Moscow (1990), pp. 149–184.Google Scholar
  8. 8.
    A. M. Chebotarev, “The sufficient conditions for jump-like Markov processes to be regular,”Teor. Veroyatn. Ee Primen.,33, No. 1, 25–39 (1988).Google Scholar
  9. 9.
    G. Lindblad, “On generators of quantum dynamic semigroups,”Comm. Math. Phys.,48, No. 2, 119–130 (1976).Google Scholar
  10. 10.
    T. Kato,Theory of Perturbations for Linear Operators [Russian translation], Mir, Moscow (1972).Google Scholar
  11. 11.
    U. Bratelli and D. Robinson,Operator Algebras and Quantum Statistical Mechanics [Russian translation], Mir, Moscow (1982).Google Scholar
  12. 12.
    R. Edwards,Functional Analysis [Russian translation], Mir, Moscow (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. M. Chebotarev

There are no affiliations available

Personalised recommendations