Mathematical Notes

, Volume 56, Issue 6, pp 1228–1237 | Cite as

Hamiltonian systems of equations for quantum means

  • V. V. Belov
  • M. F. Kondrat'eva


Hamiltonian System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Ehrenfest, “Bemerkung uber die Gultigkeit der klassischen Mechanic”,Z. Phys.,B. 45, 455–457 (1927).Google Scholar
  2. 2.
    F. A. Berezin and M. A. Shubin,The Schrödinger Equation [in Russian], Izd. Mosk. Univ., Moscow (1983).Google Scholar
  3. 3.
    V. G. Bagrov, V. V. Belov, and A. M. Rogova, “Quasiclassically localized states in quantum mechanics”,Teor. Mat. Fiz.,90, No. 1, 48–55 (1992).Google Scholar
  4. 4.
    A. M. Perelomov,Integrable Systems of Classical Mechanics and Lie Algebras [in Russian], Nauka (1990).Google Scholar
  5. 5.
    M. V. Karasev and V. P. Maslov,Nonlinear Poisson Brackets. Geometry and Quantization [in Russian], Nauka (1991).Google Scholar
  6. 6.
    V. G. Bagrov, V. V. Belov, and M. F. Kondrat'eva, “The quasiclassical approximation in quantum mechanics. A new approach”,Teor. Mat. Fiz.,98, No. 1, 48–55 (1994).Google Scholar
  7. 7.
    V. V. Belov, “The quasiclassical limit of the motion equations for quantum means of nonrelativistic systems with gauge fields”,Preprint No. 58, Sib. Otd. Acad. Nauk SSSR, Tomsk (1989).Google Scholar
  8. 8.
    V. V. Belov and V. P. Maslov, “Quasiclassical trajectory-coherent states for the Dirac operator with the anomalous Pauli interaction”,Dokl. Akad. Nauk SSSR,305, 574–580 (1989).Google Scholar
  9. 9.
    V. V. Belov and M. F. Kondrat'eva, ““Classical” equations of motion in quantum mechanics with gauge fields”,Teor. Mat. Fiz.,92, No. 1, 41–61 (1992).Google Scholar
  10. 10.
    S. Yu. Sadov, “On a dynamic system arising from a finite-dimensional approximation of the Schrödinger equation”,Mat. Zametki,56, No. 3, 118–133 (1994).Google Scholar
  11. 11.
    V. G. Bagrov, V. V. Belov, A. M. Rogova, and A. Yu. Trifonov, “The quasiclassical localization of the states and obtaining of classical equations of motion from quantum theory”,Mod. Phys. Lett. B,7, No. 26, 1667–1675 (1993).Google Scholar
  12. 12.
    V. G. Bagrov, V. V. Belov, M. F. Kondrat'eva, A. M. Rogova, and A. Yu. Trifonov, “The quasiclassical localization of the states and new approach to quasiclassical approximation in quantum mechanics”, in:Proc. 5th and 6th Lomonosov Conferences on Elementary Particles Physics “Particle physics, gauge fields and astrophysics”,A. Studenikin (ed.), Accademia Nazionale dei Lincei, Rome, Italy (1994).Google Scholar
  13. 13.
    M. F. Kondrat'eva, “Quasiclassical trajectory-coherent states and the evolution of quantum means”, in:Thesis of Candidate of Phys.-Math. Sciences, Tomsk. Univ., Tomsk (1993).Google Scholar
  14. 14.
    Y. Tsue and Y. Fujiwara, “Time-dependent variational approach in terms of squeezed coherent states”,Progr. Theor. Phys.,86, No. 2, 443–466 (1991).Google Scholar
  15. 15.
    V. G. Bagrov, V. V. Belov, M. F. Kondratt'eva, A. M. Rogova, and A. Yu. Trifonov, “A new formulation of quasiclassical approximation in quantum mechanics”,Zh. Mosk. Fiz. Obsch.,3, 1–12 (1993).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. V. Belov
  • M. F. Kondrat'eva

There are no affiliations available

Personalised recommendations