Hydrobiological Bulletin

, Volume 11, Issue 2, pp 56–61 | Cite as

Salt tolerance, salt preference and blood sodium regulation inGammarus roeseli Gervais, 1835 (Crustacea: Amphipoda)

  • Jaap Dorgelo


  1. 1.

    The salt tolerance, the salt preference and the blood sodium regulation at 15°C ofGammarus roeseli from running fresh water were studied.

  2. 2.

    It tolerates diluted sea water of 1‰ Cl' better than habitat water.

  3. 3.

    It prefers the habitat water when able to choose suparnormal salinities.

  4. 4.

    Both the tolerance and the presence of preferential behaviour may point to a non-freshwater status.

  5. 5.

    G. roeseli has a hyperosmotic blood sodium regulation. Comparison of the blood sodium concentration of gammarids from fresh water and oligohaline waters shows that the environmental sodium content mostly does not give information on the blood sodium level.



Sodium Fresh Water Salt Tolerance Sodium Concentration Sodium Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BEADLE, L.C., 1943. Osmotic regulation and the faunas of inland waters. Biol. Rev., 18: 172–183.Google Scholar
  2. BEADLE, L.C., 1959. Osmotic and ionic regulation in relation to the classification of brackish and inland saline waters. Arch. Oceanogr. Limnol. 11, Suppl.: 142–151.Google Scholar
  3. BEADLE, L. C. and J. B. CRAGG, 1940. Studies on adaptation to salinity inGammarus spp. I. Regulation of blood and tissues and the problem of adaptation to fresh water. J. exp. Biol., 17: 153–163.Google Scholar
  4. BESCH, W., 1968. Zur Verbreitung der Arten des GenusRivulogrammarus in Fliessgewässern Nordbadens und Südwürttembergs. Beitr. naturk. Forsch. Südw.-Dtl., 27: 27–33.Google Scholar
  5. DORGELO, J., 1974. Comparative ecophysiology of gammarids (Crustacea: Amphipoda) from marine, brackish and fresh-water habitats exposed to the influence of salinity-temperature combinations. I. Effect on survival. Hydrobiol. Bull., 8: 90–108.Google Scholar
  6. DORGELO, J., 1975. Comparative ecophysiology of gammarids (Crustacea: Amphipoda) from marine, brackish and fresh-water habitats exposed to the influence of salinity-temperature combinations. II. Preference experiments. Verh. Internat. Verein. Limnol., 19: 3007–3013.Google Scholar
  7. DORGELO, J., 1976. Salt tolerance in Crustacea and the influence of temperature upon it. Biol. Rev., 51: 225–290.Google Scholar
  8. DORGELO, J., Intraspecific osmoregulatory comparison inGammarus pulex (Crustacea: Amphipoda). Verh. Internat. Verein. Limnol., 20 (in press).Google Scholar
  9. DORGELO, J., 1977. Comparative ecophysiology of gammarids (Crustacea: Amphipoda) from marine, brackish- and fresh-water habitats exposed to the influence of salinity-temperature combinations. IV. Blood sodium regulation. Neth. J. Sea Res., 11: 184–199.Google Scholar
  10. HOLTHUIS, L.B., 1956. Notities betreffende Limburgse Crustacea. III. De Amphipoda van Limburg. Natuurhistorisch Maandblad., 45: 83–95.Google Scholar
  11. ILLIES, J., 1954. Die Besiedlung der Fulda (insbes. das Benthos der Salmonidenregion) nach dem jetzigen Stand der Untersuchung. Ber. Limnol. Flusstation Freudenthal, 5: 1–28.Google Scholar
  12. LEENTVAAR, P., 1954. De verspreiding van een bijzondere vlokreeft in Nederland. De Levende Natuur, 57: 208–210.Google Scholar
  13. LUCU, Č., S. KEČKEŠ and B. OZRETIČ, 1972. Acclimatisation of some coastal animals to changed salinity. Comm. Int. Explor. Sci. Mer. Méditerr. Monaco, 20: 507–510.Google Scholar
  14. SCHELLENBERG, A., 1942. Die Tierwelt Deutschlands. 40. Teil: Krebstiere oder Crustacea. IV: Flohkrebse oder Amphipoda. Gustav Fisher, Jena.Google Scholar
  15. SHAW, J. and D.W. SUTCLIFFE, 1961. Studies on the sodium balance inGammarus duebeni Lilljeborg andG.pulex pulex (L.). J. exp. Biol., 18: 1–15.Google Scholar
  16. SPAARGAREN, D.H., 1972. Osmoregulation in the prawnsPalaemon serratus andLysmata seticaudata from the Bay of Naples. Neth. J. Sea Res., 5: 416–436.Google Scholar
  17. SUTCLIFFE, D.W., 1967. Sodium regulation in the amphipodGammarus duebeni from brackish-water and fresh-water localities in Britain. J. exp. Biol., 46: 529–550.Google Scholar
  18. SUTCLIFFE, D.W., 1968: Sodium regulation and adaptation to fresh-water in gammarid crustaceans. J. exp. Biol., 48: 359–380.Google Scholar
  19. SUTCLIFFE, D.W., 1975. Sodium uptake and loss inCrangonyx pseudo-gracilis (Amphipoda) and some other crustaceans. Comp. Biochem. Physiol., 52A: 255–257.Google Scholar
  20. SUTCLIFFE, D.W. and J. SHAW, 1968. Sodium regulation in the amphipodGammarus duebeni Lilljeborg from fresh-water localities in Ireland. J. exp. Biol., 48: 339–358.Google Scholar
  21. VINCENT, M., 1967-a. Aspects de la régulation ionique chezGammarus pulex pulex (ions Cl' et Na+). C. R. Soc. Biol., 161: 1434–36.Google Scholar
  22. VINCENT, M., 1967-b. Aspects de la régulation ionique chezEchinogammarus berilloni (C.). C. R. Soc. Biol., 161: 2248–50.Google Scholar
  23. VINOGRADOW, G.A., 1972. Functioning of osmotic regulation systems of fresh-water amphipods in water of different salinity. Ekologiya, 3: 77–84.Google Scholar
  24. WERNTZ, H.O., 1963. Osmotic regulation in marine and fresh-water gammarids (Amphipoda). Biol. Bull., 124: 225–239.Google Scholar

Copyright information

© Netherlands Hydrobiological Society 1977

Authors and Affiliations

  • Jaap Dorgelo
    • 1
  1. 1.Laboratory of Aquatic EcologyUniversity of AmsterdamAusterdainThe Netherland

Personalised recommendations