Skip to main content

Algorithm 39 Clusterwise linear regression

Algorithmus 39. Klassenweise lineare Regression

Abstract

The combinatorial problem of clusterwise discrete linear approximation is defined as finding a given number of clusters of observations such that the overall sum of error sum of squares within those clusters becomes a minimum. The FORTRAN implementation of a heuristic solution method and a numerical example are given.

Zusammenfassung

Die kombinatorische Aufgabe der klassenweisen diskreten linearen Approximation wird dadurch definiert, daß die Summe über die Fehlerquadratsummen innerhalb der Klassen minimiert wird. Die FORTRAN-Implementation eines heuristischen Lösungsverfahrens und ein numerisches Beispiel werden angegeben.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Barrodale, I., Young, A.: Algorithms for bestL 1 andL linear approximation on a discrete set. Numer. Math.8, 295–306 (1966).

    Google Scholar 

  2. [2]

    Barrodale, I., Young, A.: An improved algorithm for discreteL 1 linear approximation. SIAM J. Numer. An.10, 839–848 (1973).

    Google Scholar 

  3. [3]

    Businger, P. A.: Updating a singular value decomposition. BIT10, 376–397 (1970).

    Google Scholar 

  4. [4]

    Cromme, L.: Zur praktischen Behandlung linearer diskreter Approximationsprobleme in der Maximumsnorm. Computing21, 37–52 (1978).

    Google Scholar 

  5. [5]

    Dinkelbach, W.: Sensitivitätsanalysen und parametrische Programmierung. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  6. [6]

    Fakiner, H., Krieger, E., Rohmeier, H.: Regional differenzierte Analyse und Prognose des Wasserbedafs der privaten Haushalte in der Bundesrepublik Deutschland. In: Fallstudien Cluster-Analyse (Späth, H., Hrsg.). München: R. Oldenbourg 1977.

    Google Scholar 

  7. [7]

    Daniel, J. W., Gragg, W. B., Kaufman, L., Stewart, G. W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. of Comput.30, 772–795 (1976).

    Google Scholar 

  8. [8]

    Lawson, C. L., Hanson, R. J.: Solving least squares problems. Englewood Cliffs: Prentice-Hall 1974.

    Google Scholar 

  9. [9]

    Merle, G., Späth, H.: Computational experiences with discreteL p-approximation. Computing12, 315–321 (1974).

    Google Scholar 

  10. [10]

    Rey, W.: On leastp-th power methods in multiple regressions and location estimations. BIT15, 174–185 (1975).

    Google Scholar 

  11. [11]

    Schittkowski, K., Stoer, J.: A factorization method for constrained least squares prolems with data changes, part 1: theory. Preprint No. 20, Institut für Angewandte Mathematik und Statistik, Universität Würzburg, 1976. [See also: Numer. math.31, 431–463 (1979).]

  12. [12]

    Schittkowski, K., Zimmermann, P.: A factorization method for constrained least squares problems with data changes, part 2: numerical tests, comparisons and ALGOL-codes. Preprint No. 30, Institut für Angewandte Mathematik und Statistik, Universität Würzburg, 1977.

  13. [13]

    Späth, H.: Algorithmen für multivariable Ausgleichmsodelle. München: R. Oldenbourg 1974.

    Google Scholar 

  14. [14]

    Späth, H.: Cluster-Analyse-Algorithmen, 2. Aufl. München: R. Oldenburg 1977. (English traslation: Cluster analysis algorithms. Chichester: Horwood 1979.)

    Google Scholar 

  15. [15]

    Späth, H.: Computational experiences with the exchange method apllied to four commonly used partitioning cluster analysis criteria. Europ. J. Op. Res.1, 23–31 (1977).

    Google Scholar 

  16. [16]

    Späth, H.: Klassenweise diskrete Approximation. In: Numerische Methoden bei graphentheoretischen und kombinatorischen problemen, Band 2, ISNM Vol. 46. (Collatz, L., Meinardus, G., Wetterling, W., Hrsg.). Basel-Stuttgart: Birkhäuser 1979.

    Google Scholar 

  17. [17]

    Stoer, J.: Einführung in die Numerische Mathematik I, 2. Aufl. Berlin-Heidelberg-New York: Springer 1976.

    Google Scholar 

  18. [18]

    Watson, G. A.: On two methods for discreteL p approximation. Computing18, 263–266 (1977).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Späth, H. Algorithm 39 Clusterwise linear regression. Computing 22, 367–373 (1979). https://doi.org/10.1007/BF02265317

Download citation

Keywords

  • Linear Regression
  • Computational Mathematic
  • Linear Approximation
  • Solution Method
  • Combinatorial Problem