Skip to main content
Log in

Algorithm 39 Clusterwise linear regression

Algorithmus 39. Klassenweise lineare Regression

  • Algorithm
  • Published:
Computing Aims and scope Submit manuscript


The combinatorial problem of clusterwise discrete linear approximation is defined as finding a given number of clusters of observations such that the overall sum of error sum of squares within those clusters becomes a minimum. The FORTRAN implementation of a heuristic solution method and a numerical example are given.


Die kombinatorische Aufgabe der klassenweisen diskreten linearen Approximation wird dadurch definiert, daß die Summe über die Fehlerquadratsummen innerhalb der Klassen minimiert wird. Die FORTRAN-Implementation eines heuristischen Lösungsverfahrens und ein numerisches Beispiel werden angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Barrodale, I., Young, A.: Algorithms for bestL 1 andL linear approximation on a discrete set. Numer. Math.8, 295–306 (1966).

    Google Scholar 

  2. Barrodale, I., Young, A.: An improved algorithm for discreteL 1 linear approximation. SIAM J. Numer. An.10, 839–848 (1973).

    Google Scholar 

  3. Businger, P. A.: Updating a singular value decomposition. BIT10, 376–397 (1970).

    Google Scholar 

  4. Cromme, L.: Zur praktischen Behandlung linearer diskreter Approximationsprobleme in der Maximumsnorm. Computing21, 37–52 (1978).

    Google Scholar 

  5. Dinkelbach, W.: Sensitivitätsanalysen und parametrische Programmierung. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  6. Fakiner, H., Krieger, E., Rohmeier, H.: Regional differenzierte Analyse und Prognose des Wasserbedafs der privaten Haushalte in der Bundesrepublik Deutschland. In: Fallstudien Cluster-Analyse (Späth, H., Hrsg.). München: R. Oldenbourg 1977.

    Google Scholar 

  7. Daniel, J. W., Gragg, W. B., Kaufman, L., Stewart, G. W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. of Comput.30, 772–795 (1976).

    Google Scholar 

  8. Lawson, C. L., Hanson, R. J.: Solving least squares problems. Englewood Cliffs: Prentice-Hall 1974.

    Google Scholar 

  9. Merle, G., Späth, H.: Computational experiences with discreteL p-approximation. Computing12, 315–321 (1974).

    Google Scholar 

  10. Rey, W.: On leastp-th power methods in multiple regressions and location estimations. BIT15, 174–185 (1975).

    Google Scholar 

  11. Schittkowski, K., Stoer, J.: A factorization method for constrained least squares prolems with data changes, part 1: theory. Preprint No. 20, Institut für Angewandte Mathematik und Statistik, Universität Würzburg, 1976. [See also: Numer. math.31, 431–463 (1979).]

  12. Schittkowski, K., Zimmermann, P.: A factorization method for constrained least squares problems with data changes, part 2: numerical tests, comparisons and ALGOL-codes. Preprint No. 30, Institut für Angewandte Mathematik und Statistik, Universität Würzburg, 1977.

  13. Späth, H.: Algorithmen für multivariable Ausgleichmsodelle. München: R. Oldenbourg 1974.

    Google Scholar 

  14. Späth, H.: Cluster-Analyse-Algorithmen, 2. Aufl. München: R. Oldenburg 1977. (English traslation: Cluster analysis algorithms. Chichester: Horwood 1979.)

    Google Scholar 

  15. Späth, H.: Computational experiences with the exchange method apllied to four commonly used partitioning cluster analysis criteria. Europ. J. Op. Res.1, 23–31 (1977).

    Google Scholar 

  16. Späth, H.: Klassenweise diskrete Approximation. In: Numerische Methoden bei graphentheoretischen und kombinatorischen problemen, Band 2, ISNM Vol. 46. (Collatz, L., Meinardus, G., Wetterling, W., Hrsg.). Basel-Stuttgart: Birkhäuser 1979.

    Google Scholar 

  17. Stoer, J.: Einführung in die Numerische Mathematik I, 2. Aufl. Berlin-Heidelberg-New York: Springer 1976.

    Google Scholar 

  18. Watson, G. A.: On two methods for discreteL p approximation. Computing18, 263–266 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

Späth, H. Algorithm 39 Clusterwise linear regression. Computing 22, 367–373 (1979).

Download citation

  • Received:

  • Issue Date:

  • DOI: