Human Genetics

, Volume 97, Issue 2, pp 163–170 | Cite as

A common region of loss of heterozygosity in Wilms' tumor and embryonal rhabdomyosarcoma distal to the D11S988 locus on chromosome 11p15.5

  • Corinne Besnard-Guérin
  • Irene Newsham
  • Robert Winqvist
  • Webster K. Cavenee
Original Investigation


The development of Wilms' tumor has been associated with two genetic loci on chromosome 11: WTI in 11p13 and WT2 in 11p15.5. Here, we have used loss of heterozygosity (LOH) in Wilms' tumors to narrow the WT2 locus distal to the D11S988 locus. A similar region was apparent for the clinically associated tumor, embryonal rhabdomyosarcoma. We have also demonstrated that a constitutional chromosome translocation breakpoint associated with Beckwith-Wiedemann syndrome and an acquired somatic chromosome translocation breakpoint in a rhabdoid tumor each occur in the same chromosomal interval as the smallest region of LOH in Wilms' tumors and embryonal rhabdomyosarcoma. Finally, we report the first Wilms' tumor without a cytogenetic deletion that shows targeted LOH for 11p15 and 11p13 while maintaining germline status for 11p14.


Metabolic Disease Small Region Chromosome 11p15 Genetic Locus Rhabdomyosarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali IU, Lidereau R, Theillet C, Callahan R (1987) Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science 238: 185–188Google Scholar
  2. Bepler G, Garcia-Blanco MA (1994) Three tumor-suppressor regions on chromosome 11p identified by high-resolution deletion mapping in human non-small-cell lung cancer. Proc Natl Acad Sci USA 91: 5513–5517Google Scholar
  3. Bhattacharya S, Wilson TM, Wojciechowski AP, Volpe CP, Scott J (1991) Hypervariable polymorphism in the APOC3 gene. Nucleic Acids Res 19: 799Google Scholar
  4. Bonetta L, Kuehn SE, Huang A, Law DJ, Kalikin LM, Koi M, Reeve AE, Brownstein BH, Yeger H, Williams BRG, Feinberg AP (1990) Wilms' tumor locus on 11p13 defined by multiple CpG island-associated transcripts. Science 250: 994–997Google Scholar
  5. Buetow KH, Weber JL, Ludwigsen S, Scherpbier-Heddema T, Duyk GM, Sheffield VC, Zhenyuan W, Murray JC (1994) Integrated human genome-wide maps constructed using the CEPH reference panel. Nat Genet 6: 391–393Google Scholar
  6. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, Jones C, Housman DE (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60: 509–520Google Scholar
  7. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC, White RL (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784Google Scholar
  8. Coppes MJ, Bonetta L, Huang A, Hoban P, Chilton-MacNeill S, Campbell CE, Weksberg R, Yeger H, Reeve AE, Williams BR. (1992) Loss of heterozygosity mapping in Wilms' tumor indicates the involvement of three distinct regions and a limited role for nondisjunction or mitotic recombination. Genes Chromosom Cancer 5: 326–34Google Scholar
  9. Dao DD, Schroeder WT, Chao LY, Kikuchi H, Strong LC, Riccardi VM, Pathak S, Nichols WW, Lewis WH, Saunders GF (1987) Genetic mechanisms of tumor-specific loss of 11p DNA sequences in Wilms tumor. Am J Hum Genet 41: 202–217Google Scholar
  10. Dowdy SF, Fasching CL, Araujo D, Lai KM, Livanos E, Weissman BE, Stanbridge EJ (1991) Suppression of tumorigenicity in Wilms tumor by the p15.5-p14 region of chromosome 11. Science 254: 293–295Google Scholar
  11. Fearon ER, Vogelstein B, Feinberg AP (1984) Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. Nature 309: 176–178Google Scholar
  12. Fearon ER, Feinberg AP, Hamilton SH, Vogelstein B (1985) Loss of genes on the short arm of chromosome 11 in bladder cancer. Nature 318: 377–380Google Scholar
  13. Fults D, Petronio J, Noblett BD, Pedone CA (1992) Chromosome l 11p15 deletions in human malignant astrocytomas and primitive neuroectodermal tumors. Genomics 14: 799–801Google Scholar
  14. Garvin AJ, Re GG, Tarnowski BI, Hazen-Martin DJ, Sens DA (1993) The G401 cell line, utilized for studies of chromosomal changes in Wilms' tumor, is derived from a rhabdoid tumor of the kidney. Am J Pathol 142: 375–380Google Scholar
  15. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GA (1990) Homozygous deletion in Wilms tumours of a zincfinger gene identified by chromosome jumping. Nature 343: 774–778Google Scholar
  16. Gessler M, Konig A, Bruns GA (1992) The genomic organization and expression of the WT1 gene. Genomics 12: 807–813Google Scholar
  17. Gessler M, Konig A, Arden K, Grundy P, Orkin S, Sallan S, Peters C, Ruyle S, Mandell J, Li F, Cavenee W, Bruns G (1994) Infrequent mutation of the WT1 gene in 77 Wilms' tumors. Hum Mutat 3: 212–222Google Scholar
  18. Grundy P, Koufos A, Morgan K, Li FP, Meadows AT, Cavenee WK (1988) Familial predisposition to Wilms' tumour does not map to the short arm of chromosome 11. Nature 336: 374–376Google Scholar
  19. Grundy PE, Telzerow PE, Breslow N, Moksness J, Huff V, Paterson MC (1994) Loss of heterozygosity for chromosomes 16q and 11p in Wilms' tumors predicts an adverse outcome. Cancer Res 54:2331–2333Google Scholar
  20. Hauge XY, Litt R, Litt M (1992) Dinucleotide repeat polymorphisms at the DI I S439 and HBB loci. Hum Mol Genet 1: 548Google Scholar
  21. Henry I, Grandjouan S, Couillin P, Barichard F, Huerre-Jeanpierre C, Glaser T, Philip T, Lenoir G, Chaussain JL, Junien C (1989) Tumor-specific loss of l 1p15.5 alleles in dell 11pl3 Wilms tumor and in familial adrenocortical carcinoma. Proc Natl Acad Sci USA 86: 3247–3251Google Scholar
  22. Huff V, Compton DA, Chao LY, Strong LC, Geiser CF, Saunders GF (1988) Lack of linkage of familial Wilms' tumour to chromosomal band 11p13. Nature 336: 377–378Google Scholar
  23. Jeanpierre C, Antignac C, Beroud C, Lavedan C, Henry I, Saunders G, Williams B, Glaser T, Junien C (1990) Constitutional and somatic deletions of two different regions of maternal chromosome 11 in Wilms tumor. Genomics 7: 434–438Google Scholar
  24. Kaneko Y, Takeda O, Homma C, Maseki N, Miyoshi H, Tsunematsu Y, Williams BG, Saunders GF, Sakurai M (1993) Deletion of WT1 and WIT1 genes and loss of heterozygosity on chromosome l 11p in Wilms tumors in Japan. Jpn J Cancer Res 84: 616–624Google Scholar
  25. Karnes PS, Tran TN, Cui MY, Bogenmann E, Shimada H, Ying KL (1991) Establishment of a rhabdoid tumor cell line with a specific chromosomal abnormality, 46,XY,t(11,22)(p15.5, 811.23). Cancer Genet Cytogenet 56: 31–38Google Scholar
  26. Koi M, Johnson LA, Kalikin LM, Little PF, Nakamura Y, Feinberg AP (1993) Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science 260: 361–364Google Scholar
  27. Koufos A, Hansen MF, Lampkin BC, Workman ML, Copeland NG, Jenkins NA, Cavenee WK (1984) Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumour. Nature 309: 170–172Google Scholar
  28. Koufos A, Hansen MF, Copeland NG, Jenkins NA, Lampkin BC, Cavenee WK (1985) Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. Nature 316:330–334Google Scholar
  29. Koufos A, Grundy P, Morgan K, Aleck KA, Hadro T, Lampkin BC, Kalbakji A, Cavenee WK (1989) Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to l 11p15.5. Am J Hum Genet 44: 711–719Google Scholar
  30. Litt M, Kramer P, Hauge XY, Weber JL, Wang Z, Wilkie PJ, Holt MS, Mishra S, Donis-Keller H, Warnich L, Relief AE, Jones C, Weissenbach J (1993) A microsatellite-based index map of human chromosome 11. Hum Mol Genet 2: 909–913Google Scholar
  31. Little MH, Thomson DB, Hayward NK, Smith PJ (1988) Loss of alleles on the short arm of chromosome 11 in a hepatoblastoma from a child with Beckwith-Wiedemann syndrome. Hum Genet 79: 186–189Google Scholar
  32. Mannens M, Slater RM, Heyting C, Bliek J, Kraker J de, Coad N, de Pagter-Holthuizen P, Pearson PL (1988) Molecular nature of genetic changes resulting in loss of heterozygosity of chromosome 11 in Wilms' tumours. Hum Genet 81: 41–48Google Scholar
  33. Mannens M, Devilee P, Bliek J, Mandjes I, Kraker J de, Heyting C, Slater RM, Westerveld A. (1990) Loss of heterozygosity in Wilms' tumors, studied for six putative tumor suppressor regions, is limited to chromosome 11. Cancer Res 50: 3279–3283Google Scholar
  34. Maw MA, Grundy PE, Millow LJ, Eccles MR, Dunn RS, Smith PJ, Feinberg AP, Law DJ, Paterson MC, Telzerow PE, Callen DF, Thompson AD, Richards RI, Reeve AE (1992) A third Wilms' tumor locus on chromosome 16q. Cancer Res 52: 3094–3098Google Scholar
  35. McNoe LA, Eccles MR, Reeve AE (1992) Dinucleotide repeat polymorphism at the D11S860 locus. Nucleic Acids Res 20: 1161Google Scholar
  36. Newsham J, Daub D, Besnard-Guérin C, Cavenee W (1994) Molecular sublocalization and characterization of the 11,22 translocation breakpoint in a malignant rhabdoid tumor. Genomics 19: 433–440Google Scholar
  37. Newsham I, Kindler-Röhrborn A, Daub D, Cavenee W (1995) A constitutional BWS-related t(11,16) chromosome translocation occuring in the same region of chromosome 16 implicated in Wilms' tumors. Genes Chromosom Cancer 12: 1–7Google Scholar
  38. Nordenskjöld A, Hedborg F, Luthman H, Nordenskjold M (1993) Tight linkage between the Beckwith-Wiedemann syndrome and a microsatellite. Hum Genet 92: 296–298Google Scholar
  39. Orkin SH, Goldman DS, Sallan SE (1984) Development of homozygosity for chromosome 11p markers in Wilms' tumour. Nature 309: 172–174Google Scholar
  40. Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP (1989) Genetic linkage of Beckwith-Wiedemann syndrome to l1p15. Am J Hum Genet 44: 720–723Google Scholar
  41. Polymeropoulos MH, Xiao H, Rath DS, Merril CR (1991) Tetranucleotide repeat polymorphism at the human tyrosine hydroxylase gene (TH). Nucleic Acids Res 19: 3753Google Scholar
  42. Redeker E, Hoovers JMN, Alders M, Moorsel CJA van, Ivens AC, Gregory S, Kalikin L, Bliek J, De Galan L, Bogaard R van den, Visser J, Voort R van der, Feinberg AP, Little PFR, Westerveld A, Mannens M (1994) An integrated physical map of 210 markers assigned to the short arm of human chromosome 11. Genomics 21: 538–550Google Scholar
  43. Reeve AE, Housiaux PJ, Gardner RJ, Chewings WE, Grindley RM, Millow LJ (1984) Loss of a Harvey ras allele in sporadic Wilms' tumour. Nature 309: 174–176Google Scholar
  44. Reeve AE, Sih SA, Raizis AM, Feinberg AP (1989) Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms' tumor cells. Mot Cell Biol 9: 1799–1803Google Scholar
  45. Scrable HJ, Witte DP, Lampkin BC, Cavenee WK (1987) Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 329: 645–647Google Scholar
  46. Tadokoro K, Oki N, Sakai A, Fujii H, Ohshima A, Nagafuchi S, Inoue T, Yamada M (1993) PCR detection of 9 polymorphisms in the WT1 gene. Hum Mot Genet 2: 2205–2206Google Scholar
  47. Tanci P, Genuardi M, Santini SA, Neri G (1992) PCR detection of an insertion/deletion polymorphism in intron 1 of the HRAS 1 locus. Nucleic Acids Res 20: 1157Google Scholar
  48. Wadey RB, Pal N, Buckle B, Yeomans E, Pritchard J, Cowell JK (1990) Loss of heterozygosity in Wilms' tumour involves two distinct regions of chromosome 11. Oncogene 5: 901–907Google Scholar
  49. Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Millaseau P, Vaysseix G, Lathrop M (1992) A second-generation linkage map of the human genome. Nature 359: 794–801Google Scholar
  50. Weissman BE, Saxon PJ, Pasquale SR, Jones GR, Geiser AG, Stanbridge EJ (1987) Introduction of a normal human chromosome 11 into a Wilms' tumor cell line controls its tumorigenic expression. Science 236: 175–180Google Scholar
  51. Weksberg R, Teshima I, Williams BR, Greenberg CR, Pueschel SM, Chernos JE, Fowlow SB, Hoyme E, Anderson IJ, Whiteman DA, Fisher N, Squire J (1993) Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mot Genet 2: 549–556Google Scholar
  52. Winqvist R, Mannermaa A, Alavaikko M, Blanco G, Taskinen PJ, Kiviniemi H, Newsham I, Cavenee W (1993) Refinement of regional loss of heterozygosity for chromosome l 1p15.5 in human breast tumors. Cancer Res 53: 4486–4488Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Corinne Besnard-Guérin
    • 1
  • Irene Newsham
    • 1
    • 2
  • Robert Winqvist
    • 3
  • Webster K. Cavenee
    • 1
    • 2
    • 3
  1. 1.Ludwig Institute for Cancer ResearchUniversity of California San-Diego, School of MedicineLa JollaUSA
  2. 2.Department of MedicineUniversity of California San-Diego, School of MedicineLa JollaUSA
  3. 3.Center for Molecular GeneticsUniversity of California San-Diego, School of MedicineLa JollaUSA

Personalised recommendations