Fish Physiology and Biochemistry

, Volume 2, Issue 1–4, pp 131–140 | Cite as

Environmental effects on feed utilization

  • Sadasivam J. Kaushik


Both external and internal factors affect the response of fish to variations in dietary quantity and quality. An attempt is made to review major, recent studies on the series of intermediate steps (intake, digestion, metabolism, excretion and retention) involved in the global response of fish to environmental changes. Among these external factors, greater attention is however devoted to those that are the most important natural effectors within the aquatic environment: temperature, ambient oxygen and salinity. The changes brought about by a change in temperature at different levels of nutrient utilization have been studied to a great extent in the recent past. As temperature affects in the first instance, the voluntary food intake, a discussion on current nutrient requirement data should preferably be dealt with in absolute terms. While critical levels of oxygen below which growth is hindered are sufficiently defined for many species, precise data on the direct effects of oxygen deficiency on nutrient utilization are still fragmentory. With regard to salinity, a distinction between stenohaline and euryhaline species and a knowledge of the physiological mechanisms corresponding to their life cycles are required before attempting comparative analyses. Within euryhaline species, best performances are noted at salinities isotonic to the internal medium. Despite accumulating evidence on the effects of cyclical phenomena, the chronobiological approach to fish culture remains practically unexplored.


fish environmental influences salinity oxygen temperature growth protein synthesis feed utilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Ahokas, R.A. and Sorg, G. 1977. The effect of salinity and temperature on intracellular osmo regulation and muscle free amino acids inFundulus diaphanus. Comp. Biochem. Physiol. 56A: 101–105.Google Scholar
  2. Alderdice, D.F., Rao, T.R. and Rosenthal, H. 1979. Osmotic responses of eggs and larvae of the Pacific herring to salinity and cadmium. Helgoländer wiss. Meeresunters. 32: 508–538.Google Scholar
  3. Ali, M.A. 1980. Environmental Physiology of Fishes. Nato Advanced Study Institutes series. 35, Plenum Press, New York.Google Scholar
  4. Atherton, W.D. and Aitken, A. 1970. Growth, nitrogen metabolism and fat metabolism inSalmo gairdneri Rich. Comp. Biochem. Physiol. 36: 719–747.Google Scholar
  5. Bahamondes-Rojas, I. 1982. Influence de la température et du taux d'oxygène dissous sur la nutrition azotée de la truite arcen-ciel (Salmo gairdneri Rich.). Thèse 3ème cycle: Inst. Natl. Polytech. Toulouse.Google Scholar
  6. Brett, J.R. 1979. Environmental factors and growth.In Fish Physiology. Vol. VIII. Bioenergetics & growth. pp. 599–675. Edited by W.S. Hoar, D.J. Randall and R. Brett. Academic Press, New York.Google Scholar
  7. Caulton, M.S. 1977. The effect of temperature on routine metabolism inTilapia rendalli Boulenger. J. Fish Biol. 11: 549–553.Google Scholar
  8. Caulton, M.S. 1978. The effect of temperature and mass on routine metabolism inSarotherodon (Tilapia) mossambicus (Peters). J. Fish Biol. 13: 195–201.Google Scholar
  9. Cho, C.Y. and Slinger, S.J. 1978. Effect of ambient temperature on the protein requirements of rainbow trout and on the fatty acid composition of gill phospholipids.In 1977 Annual Report. pp. 24–35. Edited by Fish Nutrition Laboratory University of Guelph.Google Scholar
  10. Cho, C.Y. and Slinger, S.J. 1980. Effect of water temperature on energy utilization in rainbow trout (Salmo gairdneri).In Proc. 8th Symp. on energy metabolism, Cambridge UK. pp. 287–291. Edited by Mount L.E. Butterworth, London.Google Scholar
  11. Choubert, G. Jr. Fauconneau, B. and Luquet, P. 1982. Influence d'une élévation de température sur la digestibilité de la matière sèche, de l'azote et de l'énergie chez la truite arc-en-ciel (Salmo gairdneri). Repord. Nutr. Dévelop. 22: 941–949.Google Scholar
  12. Choubert, G. Jr. Blanc, J.M. and Luquet, P. 1984. Influence de la modification de la fréquence de distribution des repas sur la digestibilité chez la truite arc-en-ciel. Ann. Zootechn. 33: 255–262.Google Scholar
  13. Clarke, W.C., Shelbourn, J.E. and Brett, J.R. 1981. Effect of artificial photoperiod cycles, temperature and salinity on growth and smolting in underyearling coho (Oncorhynchus kisutch) chinook (O. tshawytscha), and Sockeye (O. nerka) salmon. Aquaculture 22: 105–116.Google Scholar
  14. Cox, D.K. and Coutant, C.C. 1981. Growth dynamics of juvenile striped bass as fonctions of temperature and ration. Trans. Am. Fish. Soc. 110: 226–238.Google Scholar
  15. Dabrowski, K. Kaushik, S.J. Luquet, P. 1984. Metabolic utilization of body stores during early life of whitefish (Coregonus lavaretus L.) J. Fish Biol., 24: 721–729.Google Scholar
  16. Davenport, J. 1983. Oxygen and the developing eggs and larvae of the lumpfish,Cyclopterus lumpus. J. Mar. Biol. Ass. U.K. 63: 633–640.Google Scholar
  17. Davenport, J., Lønning, S. and Kjørsvik, E. 1981. Osmotic and structural changes during early development of eggs and larvae of the cod.Gadus morhua L. J. Fish Biol. 19: 317–331Google Scholar
  18. Delong, D.C. Halver, J.E. and Mertz, E.T. 1958. Nutrition of salmonid fishes. VI. Protein requirements of chinook salmon at two water temperatures. J. Nutr. 65: 589–599.PubMedGoogle Scholar
  19. Dulthie, G.G. and Houlihan, D.F. 1982. The effect of single step and fluctuating temperature changes on the oxygen consumption of flounders,Plastichthys flesus L.: lack of temperature adaptation. J. Fish Biol. 21: 215–226.Google Scholar
  20. EIFAC (European Island Fisheries Advisory Commission) 1971. Salmon and trout feeds and feeding EIFAC Tech. Pap. 12 Edited by FAO, Rome.Google Scholar
  21. Elliott, J.M. 1982. The effects of temperature and ration size on the growth and energetics of salmonids in captivity. Comp. Biochem. Physiol. 73B: 81–91.Google Scholar
  22. Fange, R. and Grove, D. 1979. Digestion.In Fish Physiology, Vol. VIII. Bioenergetics and growth. pp. 161–260. Edited by W.S. Hoar, D.J. Randall and J.R. Brett, Academic Press, New York.Google Scholar
  23. Fauconneau, B. 1984. The measurement of whole body protein synthesis in larval and juvenile carp. Comp. Biochem. Physiol. 78B: 845–850.Google Scholar
  24. Fauconneau, B., Choubert, G. Blanc, D., Breque, J. and Luquet, P. 1983. Increasing flow rate of foodstuffs though the gastrointestinal tract of rainbow trout in response to a rise in environmental temperature. Aquaculture 34: 27–39.Google Scholar
  25. Fauconneau, B. and Arnal, M. 1985. In vivo protein synthesis in different tissues and the whole body of rainbow trout (Salmo gairdneri R.). Influence of environmental temperature. Comp. Biochem. Physiol. 82B: 179–187.CrossRefGoogle Scholar
  26. Forster R.P. and Goldstein, L. 1970. Formation of excretory products.In Fish Physiology. Vol. I. pp 313–350. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York.Google Scholar
  27. Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish.In Fish Physiology. Vol. 6, pp. 1–98. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York.Google Scholar
  28. Garin, D. 1984. Influence de la salinité sur l'utilisation oxydatif du glucose et du glutamate par le loup (Dicentrarchus labrax). Ichtyophysiologica Acta. 8: 58–74.Google Scholar
  29. Groot, J.A., Albus, H., Bakker, R. and Dekker, K. 1983. Changes in sugar transport and in electrophysiological characteristics of intestinal preparations of temperature acclimated goldfish (Carassius auratus L.). J. Comp. Physiol. 151: 163–170.Google Scholar
  30. Gross, W.L., Roelofs, E.W. and Fromm, P.O. 1965; Influence of photoperiod and growth of green sunfish,Leponis yanellus. J. Fish. Res. Board Can. 22: 1379–1386.Google Scholar
  31. Guillaume, J. Stephan, G., Messager, J.L. and Garin, D. 1984. Etude de la protéoosynthèse, de la néoglucogènèse apparentes chez le saumon coho à l'aide d'un traceur radioactif: le glutamate 414C. Influence du passage en mer. Ichtyophysiologica Acta, 8: 204–211.Google Scholar
  32. Guillaume, J. Stephan, G. and Aldrin, J.F. 1985. Quelqes consèquences physiopathologiques de l'èlévation de la température et de la salinité chez la Truite arc-en-ciel,Salmo gairdneri Richardson. I. Etude du métabolisme intermédiaire à l'aide de l'acide glutamique14C. Ichtyophysiologica Acta. 9: 169–176.Google Scholar
  33. Haschemeyer, A.E.V., Perseli, R. and Smith, M.A.K. 1979. Effects of temperature on protein synthesis in fish of the galapagos and perlas islands. Comp. Biochem. Physiol. 64B: 91–95.Google Scholar
  34. Heming, T.A. 1982. Effects of temperature on utilization of yolk by chinook Salmon (Oncorhynchus tshawytscha) eggs and alevins. Can. J. Fish. Aquat. Sci. 39: 184–190.Google Scholar
  35. Heming, T.A., McInerney, J.E. and Alderdin, D.F. 1982. Effect of temperature on initial feeding in alevins of chinook Salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 39: 1554–1562.Google Scholar
  36. Hofer, R. 1979a. The adaptation of digestive enzymes to temperature, season and diet in roach,Rutilus rutilus L. and ruddScardinius erythrophthalmus L. I. Amylase. J. Fish Biol. 14: 565–572.Google Scholar
  37. Hofer, R. 1979b. The adaptation of digestive enzymes to temperature season and diet in roach,Rutilus rutilus L. and ruddScardinius erythrophthalmus L. Proteases. J. Fish Biol. 15: 373–379.Google Scholar
  38. Hokanson, K.E.F., Kleiner, C.F. and Fhorslind, T.W. 1977. Effects of constant temperatures and diet temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow troutSalmo gairdneri. J. Fish. Res. Board Can. 34: 639–648.Google Scholar
  39. Jackim, E. and Laroche, G. 1973. Protein synthesis inFundulus heteroclitus muscle. Comp. Biochem. Physiol. 44A: 851–866.CrossRefGoogle Scholar
  40. Jäger, T., Nollen, W., Schöfer, W. and Shodjai, F. 1981. Influence of salinity and temperature on early life stages ofCoregonus albula, C. lavaretus, R. rutilus andL. Lota. Rapp. P.-V. Réun. Const. Inst. Explor. Mr 178: 345–346.Google Scholar
  41. Jorgensen, J.B. and Mustapha, T. 1980a. The effect of hypoxia on carbohydrate metabolism on flounder (Plastichthys flesus L.) I. Utilisation of glycogen and accumulation of glycolytic and products in various tissues. Comp. Biochem. Physiol. 67B: 243–248.CrossRefGoogle Scholar
  42. Jorgensen, J.B. and Mustapha, T. 1980b. The effect of hypoxia on carbohydrate metabolism on flounder (Plastichtys flesus L.). II. High energy phosphate compounds and the role of glycolytic and gluconeogenetic enzymes. Comp. Biochem. Physiol. 67B: 249–256.CrossRefGoogle Scholar
  43. Jurss, K. 1979. Effects of temperature Salinity, and feeding on amino transferase activity in the liver and white muscle of rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol 64B: 213–218.Google Scholar
  44. Jurss, K., Bittorf, T.H. and Volker, T.H. 1985. Influence of salinity and ratio of lipid to protein in diets on certain enzyme activities in rainbow trout (Salmo gairdneri Richardson). Comp. Biochem. Physiol. 81B: 73–79.CrossRefGoogle Scholar
  45. Kamler, E. and Kato, T. 1983. Efficiency of yolk utilization bySalmo gairdneri in relation to incubation temperature and egg size. Pol. Arch. Hydrobiol. 30 (3): 271–306.Google Scholar
  46. Kaushik, S.J. 1980. Influence of nutritional status on the daily patterns of nitrogen exception in the carp (Cyprinus carpio L.) and the rainbow trout (Salmo gairdneri R.). Repr. Nutr. Develop. 20: 1751–1765.Google Scholar
  47. Kaushik, S.J. 1981. Influence of a rise in temperature on the nitrogen excretion of rainbow trout (Salmo gairdneri R.).In Aquaculture in Heated Effluents and Recirculation Systems. pp. 77–99. Edited by K. Tiews. Heenemann GmbH, Berlin.Google Scholar
  48. Kaushik, S.J. Dabrowski, K. and Luquet, P. 1982. Patterns of nitrogen excretion and of oxygen consumption during ontogenesis of common carp (Cuprinus carpio). Can. J. Fish. Aquat. Sci. 39: 1095–1105.Google Scholar
  49. Kaushik, S.J., Harache, Y., Luquet, P. 1977. Variations in the total free amino acids level in rainbow trout muscle and blood during its adaptation to seawater. Ann. Hydrobiol. 8: 145–151.Google Scholar
  50. Kaushik, S.J., Luquet, P. 1977a. Endogenous nitrogen loss from the muscle of rainbow trout starved in freshwater and in seawater. Ann. Hydrobiol. 8: 129–134.Google Scholar
  51. Kaushik, S.J., Luquet, P. 1977b. Study of free amino acids in rainbow trout in relation to salinity changes. I. Blood free amino acids during starvation. Ann. Hydrobiol. 8: 135–144.Google Scholar
  52. Kaushik, S.J. and Oliva Teles, A. 1985. Effect of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture 50: 89–101.CrossRefGoogle Scholar
  53. Kutty, M.N. 1972. Respiratory quotient and ammonia excretion inTilapia mossanbica Mar. Biol. 16: 126–133.Google Scholar
  54. Kutty, M.N. and Mohamed P.A. 1975. Metabolic adaptation of mulletRhinomuqil corsula (Hamilton) with special reference to energy utilization. Aquaculture 5: 253–270.CrossRefGoogle Scholar
  55. Lacombe, C. 1973. Influence du facteur thermique sur quelques parametres du métabolisme azoté et hydrominéral chez la carpe commune (Cyprinus carpio L.). Thèse Univ. Paul Sabatier, Toulouse, France.Google Scholar
  56. Lall, S.P. Adams, N.J. and Hines, J.A. 1984. Digestibility measurement in feedstuffs for atlantic Salmon in freshwater and seawater. Abstr. Symp. Feeding and Nutrition in fish, Aberdeen, July 10–13, 1984.Google Scholar
  57. Lall, S.P. and Bishops, F.J. 1979. Studies on the nutrient requirements of rainbow trout,Salmo gairdneri, grown in seatwater and freshwater. Advances in Aquaculture. pp. 580–584. Edited by T.V.R. Pillay and W.A. Dill. Fishing News Books, Itd. Farham. Surrey England.Google Scholar
  58. Lee, S.C. and Menu, B. 1981. Effects of salinity on egg development and hatching in grey mulletMuqil cephalus L. J. Fish Biol. 19: 179–188.Google Scholar
  59. Maceina, M.J. Nordlie, F.G. and Shireman, J.V. 1980. The influence of salinity on oxygen consumption and plasma electrolytes in grass carp.Ctenopharyngodon idella Val. J. Fish Biol. 16: 613–619.Google Scholar
  60. McCauley, R.W. and Casselman, J.M. 1981. The final preferendum as an index of the temperature for optimum growth in fish.In Proc. World Symp. Aquaculture in Heated Effluents and Recirculation System, Vol. II. pp. 81–93. Edited by K. Tiews Heenemann GmbH, Berlin.Google Scholar
  61. McLeese, J.M. and Stevens, E.D. 1982. The effect of acclimation temperature assay temperature and ration on the specific activity of trysin and chymo trypsin from rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. Vol 73B: 631–634.CrossRefGoogle Scholar
  62. Medale, F. 1985. Influence d'une réduction du taux d'oxygene de l'eau pendant une période prolongée, sur certains aspects du métabolisme azoté chez la truite arc-en-ciel (Salmo gairdneri Rich.). Thèse 3ème cycle Univ. Paul Sabatier, Toulouse, France.Google Scholar
  63. Nikinmaa, M. 1981. Respiratory adjustements of rainbow trout (Salmo gairdneri Richardson) to changes in environmental temperature and oxygen availability Helsingin yliopiston monistuspalvelu, Painatusjaos Helsinki.Google Scholar
  64. Noeske, T.A. and Spieler, R.E. 1984. Circadian feeding time affect growth of fish. Trans. Am. Fish Soc. 113: 540–544.CrossRefGoogle Scholar
  65. NRC (National Research Council), 1981. Nutrient Requirements of Coldwater Fishes. National Academy Press, Washington, DC.Google Scholar
  66. Ott, M.E. Heisler, N. and Ultsch, C.R. 1980. A re-evaluation of the relationship between temperature and critical oxygen tension in freshwater fishes. Comp. Biochem. Physiol. 67A: 337–340.CrossRefGoogle Scholar
  67. Owen, T.G. and Wiggs, A.J. 1971. Thermal compensation in the stomach of the brook trout (Salvelinus fontinalis Michill). Comp. Biochem. Physiol. 40B, 465–473.CrossRefGoogle Scholar
  68. Peer Mohamed, M. 1981. Metabolism ofTilapia mossambica (Peters) with emphasis on hypoxia. Ind. J. Exp. Biol. 19: 1098–1100.Google Scholar
  69. Phillips, A.M. Jr. Podoliak, H.A. Brockway, D.R. and Vaughn, R.R. 1958. The Nutrition of trout. Fish. Res. Bull. 21, Albany.Google Scholar
  70. Possompes, B.P. 1973. Influence de la température sur les besoins en protéines, le transit alimentaire et la digestibilité chez la truite arc-en-cielSalmo gairdneri Richardson. Thèse 3ème cycle, Univ. Paris VI.Google Scholar
  71. Poston, H.A. 1978. Neuroendocrine mediation of photoperiod and other environmental influences on physiological responses in salmonids: a review. Technical papers of the U.S. Fish and Wildlife service, 96: 1–14.Google Scholar
  72. Quantz, G. 1985. Use of endogenous energy sources by larval turbot (Scophthalmus maximus L.) Trans. Am. Fish. Soc. 114: 558–563.CrossRefGoogle Scholar
  73. Roberts, J.K. 1977. The metabolism and growth of rainbow trout,Salmo gairdneri in fresh and saline waters. Ph. D. Thesis, Univ. Aston, Birmingham, U.K.Google Scholar
  74. Sauer, D.M. and Haider, G. 1979. Enzyme activities in the plasma of rainbow trout (Salmo gairdneri Richardson); the effects of nutritional status and salinity. J. Fish Biol. 14: 407–412.Google Scholar
  75. Saunders, R.L. and Henderson, E.B. 1970. Influence of photoperiod on smolt develoment and growth of Atlantic salmon,Salmo salar. J. Fish. Res. Board Can. 27: 1295–1311.Google Scholar
  76. Shaw, H.M. Saunders, R.L. and Hall, H.C. 1975. Environmental salinity: its failure to influence growth of atlantic salmon (Salmo salar). J. Fish. Res. Board Can. 32: 1821–1824.Google Scholar
  77. Slinger, S.J. Cho, C.Y. and Holub, B.J. 1977. Effect of water temperature on protein and fat requirements of rainbow trout (Salmo gairdneri): Proc. 12th Annu. Nutr. Conf. Feed-Manuf., Ontario, Toronto, pp. 1–5.Google Scholar
  78. Smith, M.W. 1976. Temperature adaptation in fish. Biochem. Soc. Symp. 41: 43–60.PubMedGoogle Scholar
  79. Smith, G.L., Hattingh, B. and Ferreira, J.T. 1980. The physiological responses of blood during thermal adaptation in three freshwater fish species. J. Fish Biol. 19: 147–160.Google Scholar
  80. Sundararaj, B.I., Nath, P. and Halberg, F. 1982. Circadian meal timing in relation be lighting schedule optimizes catfish body weight gain. J. Nutr. 112: 1085–1097.PubMedGoogle Scholar
  81. Vellas, F., Parent, J.P. Bahamondes, I. and Charpenteau, M. 1982. Influence d'une augmentation de la température sur certains aspects du catabolisme azoté chez la truite arc-en-ciel (Salmo gairdneri Rich.). Reprod; Nutr. Develop. 22: 851–864.Google Scholar
  82. Vondracek, B. Cech, J.J. Jr. and Longanecker, D. 1982. Effect of cyclic and constant temperatures on the respiratory metabolism of the tahoe sucker,Catostomus tahoensis (Pisces: catostomidae). Comp. Biochem. Physiol. 73A: 11–14.CrossRefGoogle Scholar
  83. Wedemeyer, G. 1973. Some physiological aspects of sublethal heat stress in the juvenile steelhead trout (Salmo gairdneri) and Coho salmon (Oncorhynchus kisutch). J. Fish. Res. Board Can. 30: 831–834.Google Scholar
  84. Yamawaki, H. 1983. Lactate dehydrogenase activity and lactate/pyruvate ratio in muscle of thermally acclimated goldfish. Comp. Biochem. Physiol. 74B: 775–780.CrossRefGoogle Scholar
  85. Zeitoun, I.H., Halver, J.E., Ullrey, D.E. and Tack, P.I. 1973. Influence of salinity on protein requirements of rainbow trout (Salmo gairdneri) fingerlings. J. Fish Res. Board Can. 30: 1867–1873.Google Scholar
  86. Zeitoun, I.H. Ullrey, D.E. Halver, J.E. Tack, P.I. and Magee, W.T. 1974. Influence of salinity on protein requirements of coho salmon (Oncorhynchus kisutch) smolts. J. Fish. Res. Board Can. 31: 1145–1148.Google Scholar

Copyright information

© Kugler Publications bv 1986

Authors and Affiliations

  • Sadasivam J. Kaushik
    • 1
  1. 1.Laboratory of Fish Nutrition, I.N.R.A., Saint Pee-sur-NivelleAscainFrance

Personalised recommendations