Advertisement

Chromatographia

, Volume 36, Issue 1, pp 263–267 | Cite as

Chromatographic analysis of some alkylphosphonic acids using a conductimetric detection. Application to fosfomycin determination

  • G. A. Pianetti
  • A. Baillet
  • F. Traore
  • G. Mahuzier
Article

Summary

This paper describes an ion chromatographic technique with conductimetric detection for the rapid quantitative analysis of alkylphosphonic acids. The choice of the mixture of acetonitrile/borategluconate buffer (12∶88 v/v) as the mobile phase is discussed: acetonitrile was added to decrease the retention time of phenylphosphonic acid and fosfomycin. Simultaneously the background conductivity was smaller. Borate/gluconate buffer showed the good buffer capacity at pH=8.5 required for the injection of strong acids. The pH was set at 8.5 to obtain the fully dissociated species since their monoionic forms are poorly retained. No eluent suppression process was necessary since the mobile phase led to a low background conductivity. The validation of the method has been studied. Linearity was determined over a concentration range of from 10 to 80 μg·ml−1. Intra- and inter-day reproducibilities were satisfactory with relative standard deviations respectively less than 1.0 and 4.8%. The lowest detectable limits were from 0.2 to 1.0 μg depending on the analysed compound. The method has been successfully applied to the determination of fosfomycin in biological samples.

Key Words

Ion chromatography Conductimetric detection Alkylphosphonic acids Fosfomycin Quantitative analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. C. Roach, L. W. Ungar, R. N. Zare, L. M. Reimer, O. L. Pompliano, J. W. Frost, Anal. Chem.59, 1056 (1987).Google Scholar
  2. [2]
    P. C. Bossle, J. J. Martin, E. W. Sarver, H. Z. Sommer, J. Chromatogr.267, 209 (1983).Google Scholar
  3. [3]
    M. L. Shih, J. R. Smith, J. D. McMonagle, T. W. Dolzine, V. C. Greshan, Biol. Mass Spectrom.20, 717 (1991).Google Scholar
  4. [4]
    M. L. Rueppel, L. A. Suba, J. T. Marvel Biomed. Mass Spectrom.3, 28 (1976).Google Scholar
  5. [5]
    J. Aa. Tornes, B. A. Johnsen, J. Chromatogr.467, 129 (1989).Google Scholar
  6. [6]
    L. J. Schiff, S. G. Pleva, E. W. Sarver, in “Ion Chromatographic Analysis of Environmental Polluants” vol 2, J. D. Mulik, E. Sawicki, ed., Ann Arbor Science-Michigan, 1979; p-329.Google Scholar
  7. [7]
    D. Hendlin, E. O. Stapley, M. Jackson, H. Wallick, A. K. Miller, F. J. Wolf, T. W. Miller, L. Chaiet, F. M. Kahan, E. L. Foltz, H. B. Woodruff, J. M. Mata, S. Hernandez, S. Mochales, Science (Wash. D. C.)166, 122 (1969).Google Scholar
  8. [8]
    A. Csiba, Acta Pharm. Hung.50, 12 (1980).Google Scholar
  9. [9]
    H. Shafer, J. A. W. Vandenheuvel, R. Ormond, F. A. Kuehl, F. J. Wolf, J. Chromatogr.52, 111 (1970).Google Scholar
  10. [10]
    M. Toshie, M. Fumio, N. Masao, H. Takeshi, S. Mitsuaki, Rinsho Kagaku12 (2), 131 (1985).Google Scholar
  11. [11]
    A. Longo, M. Di Toro, E. Pagani, A. Carenzi, J. Chromatogr.224, 257 (1981).Google Scholar
  12. [12]
    M. C. Dessalles, J. Levieux, M. Souleau, G. Mahuzier, Path. Biol.35 (2), 200 (1987).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1993

Authors and Affiliations

  • G. A. Pianetti
    • 1
    • 2
  • A. Baillet
    • 1
  • F. Traore
    • 1
  • G. Mahuzier
    • 1
  1. 1.Laboratoire de Chimie AnalytiqueFaculté de PharmacieChatenay-MalabryFrance
  2. 2.Departamento de Produtos Farmacêuticos e CosméticosFaculdade de Farmácia da UFMGBelo Horizonte, MGBrazil

Personalised recommendations