Structural Chemistry

, Volume 6, Issue 1, pp 1–7 | Cite as

The photoelectron spectrum and conformation of phenylphosphine and phenylarsine

  • László Nyulászi
  • Dénes Szieberth
  • Gábor I. Csonka
  • József Reffy
  • Joachim Heinicke
  • Tamás Veszpremi
Article

Abstract

He(I) and He(II) photoelectron spectra of phenylphosphine and phenylarsine have been investigated and assigned. The rotational barrier of the phosphino group has been investigated at the MP2/6-31G(d,p)//MP2/6-31G(d,p) and HF/6-31G(d,p)//HF/6-31G(d,p) levels of theory, and that of the arsino group at the HF/6-31G(d,p)//6-31G(d,p) levels of theory. The rotational barrier of the two molecules is nearly the same. The energy difference between the two possible conformers of the molecules is low (1.5 kJ/mol at the MP2/6-31G(d,p) level of theory), allowing nearly free rotation about the P-C bond. The photoelectron spectrum cannot be interpreted by considering the most stable rotamer, but all possible conformers should be taken into account. The present interpretation is consistent with the smalln p - π interaction concluded from other investigations. The rotational barrier ofo-phosphinophenol is significantly larger than for phenylphosphine, and the photoelectron spectrum of this compound can be interpreted by considering a single conformer, and no appreciable interaction between the π-system of the ring and the phosphorus lone pair.

Key words

UV photoelectron spectroscopy ab initio quantum-chemical calculations phenylphosphine phenylarsine o-phosphinophenol o-arsinoaniline conformation rotational barrier 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldridge, K.; Gordon, M. S.J. Am. Chem. Soc. 1988,110, 4204.Google Scholar
  2. 2.
    Veszpremi, T.; Nyulaszi, L.; Réffy, J.; Heinicke, J.J. Phys. Chem. 1992,96, 624.Google Scholar
  3. 3.
    Nyulászi, L.; Veszprémi, T.; Réffy, J.; Burkhardt, B.; Regitz, M.J. Am. Chem. Soc. 1992,114, 9080.Google Scholar
  4. 4.
    Nyulászi, L.; Veszprémi, T.; Réffy, J.J. Phys. Chem. 1993,97, 4011.Google Scholar
  5. 5.
    Dasent, W. E.Nonexistent Compounds, Marcel Dekker: New York, 1965.Google Scholar
  6. 6.
    Mathey, F.Chem. Rev. 1988,88, 437.Google Scholar
  7. 7.
    Mathey, F.J. Organomet. Chem. 1990,400, 149.Google Scholar
  8. 8.
    Egan, W.; Tang, R.; Zok, G.; Mislow, K.J. Am. Chem. Soc. 1970,92, 1442.Google Scholar
  9. 9.
    Nyulászi, L.; Csonka, G.; Réffy, J.; Veszpremi, T.; Heinicke, J.J. Organomet. Chem. 1989,373, 57.Google Scholar
  10. 10.
    Nyulászi, L.; Csonka, G.; Réffy, J.; Veszprémi, T.; Heinicke, J.;J. Organomet. Chem. 1989,373, 49.Google Scholar
  11. 11.
    Lister, D. G.; Tyler, J. K.; Hog, J. H.; Larsen, N. W.J. Mol. Struct. 1974,23, 253.Google Scholar
  12. 12.
    Larsen, N. W.; Hansen, E. L.; Nicolaisen, F. M.Chem. Phys. Lett. 1976,43, 584.Google Scholar
  13. 13.
    Wang, Y.; Saebo, S.; Pittman, C. U.J. Mol. Struct. (Theochem) 1993,281, 91.Google Scholar
  14. 14.
    Qack, M.; Stockburger, M.J. Mol. Spectrosc. 1972,43, 87.Google Scholar
  15. 15.
    Debies, T. P.; Rabalais, J. W.Inorg. Chem. 1974,13, 308.Google Scholar
  16. 16.
    Cullen, W. R.; Hochstrasser, R. M.J. Mol. Spectrosc. 1960,118, 5.Google Scholar
  17. 17.
    Cabelli, D. E.; Cowley, A. H.; Dewar, M. J. S.J. Am. Chem. Soc. 1981,103, 3286.Google Scholar
  18. 18.
    Krupoder, S. A.; Furin, G. G.; Yakobson, G. G.; Dolenko, G. N.; Mazalov, L. N.; Sultanov, A. S.; Furley, I. I.J. Fluorine Chem. 1983,22, 305.Google Scholar
  19. 19.
    Schmidt, H.; Schweig, A.; Mathey, F.; Müller, G.Angew. Chem. 1972,84, 898.Google Scholar
  20. 20.
    Giordan, J. C.; Moore, J. H.; Tossell, J. A.; Kaim, W.J. Am. Chem. Soc. 1985,107, 5600.Google Scholar
  21. 21.
    Batchelor, R.; Birchall, T. J.J. Chem. Soc. Perkin Trans II.1974, 1338.Google Scholar
  22. 22.
    Larsen, N. W.; Steinarsson, T.J. Mol. Spectrosc. 1987,123, 405.Google Scholar
  23. 23.
    Ramondo, F.J. Organomet. Chem. 1992,434, 19.Google Scholar
  24. 24.
    Shade, C.; Schleyer, P. v. R.J. Chem. Soc. Chem. Commun. 1987, 1399.Google Scholar
  25. 25.
    Parr, W. J. E.J. Chem. Soc. Faraday II 1978,74, 933.Google Scholar
  26. 26.
    SchÄfer, W.; Schweig, A.Angew Chem. 1972,84, 898.Google Scholar
  27. 27.
    Jones, I. W.; Tebby, J. C.J. Chem. Soc. Perkin II 1979, 501.Google Scholar
  28. 28.
    Naumov, V. A.; Kataeva, O. N.Zh. Strukt. Khim. 1982,27, 160.Google Scholar
  29. 29.
    Gonbeau, D.; Lacombe, S.; Lasnes, M.; Ripoll, J.; Pfister-Guillouzo, G.J. Am. Chem. Soc. 1988,110, 2730.Google Scholar
  30. 30.
    Frey, R. F.; Coffin, J.; Newton, S. Q.; Ramek, M.; Cheng, V. K. W.; Momany, F. A.; Schafer, L.J. Am. Chem. Soc. 1992,114, 5369.Google Scholar
  31. 31.
    Veszpremi, T.; Zsombok, Gy.Magy. Kém. Folyóirat 1986,92, 39.Google Scholar
  32. 32.
    Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schlegel, H. B.; Raghavachari, K.; Robb, M.; Binkley, J. S.; Gonzalez, C.; Defrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; Pople, J. A.GAUSSIAN 90, Revision J; Gaussian, Inc.: Pittsburgh, PA, 1990.Google Scholar
  33. 33.
    Frish, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Repolgle, E. S.; Gomperts, M.; Andrews, J. A.; Ragchavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, J.; Baker, J.; Stewart, J. P.; Pople, J. A.GAUSSIAN 92, Revision C. Gaussian, Inc.: Pittsburgh, PA. 1992.Google Scholar
  34. 34.
    Amos, R. D.; Colwell, M. S.MICROMOL MARK IV, 1987.Google Scholar
  35. 35.
    Binning, Jr. R. C.; Curtiss, L. A.J. Comput. Chem. 1990,11, 1206.Google Scholar
  36. 36.
    Bock, H.Pure Appl. Chem. 1975,44, 343.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • László Nyulászi
    • 1
  • Dénes Szieberth
    • 1
  • Gábor I. Csonka
    • 1
  • József Reffy
    • 1
  • Joachim Heinicke
    • 2
  • Tamás Veszpremi
    • 1
  1. 1.Department of Inorganic ChemistryTechnical University of BudapestBudapestHungary
  2. 2.Department of ChemistryErnst Moritz-Amdt University GreifswaldGreifswaldGermany

Personalised recommendations