Algebra and Logic

, Volume 32, Issue 6, pp 376–385 | Cite as

Lascar rank and the finite cover property for complete theories of unars

  • A. N. Ryaskin
Article
  • 18 Downloads

Keywords

Mathematical Logic Complete Theory Cover Property Finite Cover Finite Cover Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Ryaskin, “The number of models of complete theories of unars,” in:Model Theory and Its Applications, Tr. Inst. Mat. SO AN SSSR,8 (1988), pp. 162–182.Google Scholar
  2. 2.
    C. Toffalori, “1-Ary functions and the f.c.p.,”Illinois J. Math.,35, No. 3, 434–450 (1991).Google Scholar
  3. 3.
    H. J. Keisler, “Ultraproducts which are not saturated,”J. Symb. Logic,32, No. 1, 23–46 (1967).Google Scholar
  4. 4.
    L. Marcus, “The number of countable models of a theory of one unary function,”Fund. Math.,108, No. 3, 171–181 (1980).Google Scholar
  5. 5.
    S. Shelah,Classification Theory and the Number of Non-Isomorphic Models, North-Holland, Amsterdam (1978).Google Scholar
  6. 6.
    D. Lascar and B. Poizat, “An introduction to forking,”J. Symb. Logic,44, No. 3, 330–350 (1979).Google Scholar
  7. 7.
    D. Lascar, “Ranks and definability in superstable theories,”Israel J. Math.,23, No. 1, 53–87 (1976).Google Scholar
  8. 8.
    K. Kuratowski and A. Mostowski,Set Theory, North-Holland, Amsterdam (1968).Google Scholar
  9. 9.
    C. Toffalori, “Classification theory for a 1-ary function,”Illinois J. Math.,35, No. 1, 1–26 (1991).Google Scholar
  10. 10.
    J. Saffe, “Categoricity and ranks,”J. Symb. Logic,49, No. 4, 1379–1392 (1984).Google Scholar
  11. 11.
    Yu. E. Shishmarev, “On categorical theories of one function,”Mat. Zametki,11, No. 1, 89–98 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. N. Ryaskin

There are no affiliations available

Personalised recommendations