Advertisement

Structural Chemistry

, Volume 8, Issue 2, pp 121–129 | Cite as

Theoretical analysis of counterfoil influence over the physicochemical properties of aniline tetramers in several oxidation states

  • M. E. Vaschetto
  • B. A. Retamal
  • M. L. Contreras
  • J. H. Zagal
Article

Abstract

We present semiempirical quantum chemical calculations of geometric structures, charge distributions, energy levels, ionization potentials, and enthalpies of formation for aniline tetramers in different oxidation states using the semiempirical AM1 method. For tetraaniline radical cation the effect of these three counterions on the above-mentioned physicochemical parameters was analyzed. The ions studied included Cl, HSQ4, and CH3COO. Chloride counterion showed a large charge transfer to the chain, as was shown in a preceding work [4]. HSO4 showed a strong charge stabilization without transfer. CH3COO exhibits hydrogen bond formation and also displays a strong charge stabilization in a fragment of the chain, but does not transfer any charge. Also, Cl was able to form a hydrogen bond, depending on the initial position that it occupies in relation to the tetrameric chain, which is then optimized. Charge transfer is present for the Cl cases. For dication structures the effect of SO 4 2− was analyzed. Our calculations showed that the distribution of the energy levels of tetraaniline radical cation can be comparable to the polyaniline ones by adding a counterion to the tetramer.

Key words

Oligoaniline polyaniline anions charge transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Y.; SaebØ, S.; Pittman, Jr., C. U.J. Mol. Struct. (Teochem) 1993,281, 91.CrossRefGoogle Scholar
  2. 2.
    Libert, J.; Bredas, J.-L.Synth. Metals 1993,55-57, 4314.CrossRefGoogle Scholar
  3. 3.
    Boudreaux, D. S.; Chance, R. R.; Wolf, J. F.; Shacklette, L. W.; Brédas, J. L.; Thémans, B.; André, J. M.; Silbey, R.J. Chem. Phys. 1986,85, 4584.CrossRefGoogle Scholar
  4. 4.
    Epstein, A. J. InConjugated Polymers. The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials; Brédas, J. L.; Silbey, R. S., Eds.; Kluwer: Dordrecht, The Netherlands, 1991; p. 211.Google Scholar
  5. 5.
    Huang, W. S.; MacDiarmid, A. G.Polymer 1993,34, 1833.CrossRefGoogle Scholar
  6. 6.
    Brédas, J. L.; Quatrocchi, C.; Libert, J.; MacDiarmid, A. G.; Ginder, J. M.; Epstein, A.J. Phys. Rev. B 1991,44, 6002.CrossRefGoogle Scholar
  7. 7.
    Libert, J.; Bredas, J.-L.Synth. Metals 1995,69, 121.CrossRefGoogle Scholar
  8. 8.
    BahÇece, S.; Toppare, L.; Yurtsever, E.Synth. Metals 1994,68, 57.CrossRefGoogle Scholar
  9. 9.
    Evans, G. P. InAdv. Electrochem. Sci. Eng., Vol. 1; Gerischer, H.; Tobias, C. W., Eds.; Verlag Chemie (VCH): New York, 1990, p. 1.Google Scholar
  10. 10.
    Lux, F.Polymer 1994,55, 2915.CrossRefGoogle Scholar
  11. 11.
    Lapkowski, M.Synth. Metals 1990,35, 183.CrossRefGoogle Scholar
  12. 12.
    Koziel, K.; Lapkowski, M.Synth. Metals 1993,55–57, 1005.CrossRefGoogle Scholar
  13. 13.
    Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P.J. Am. Chem. Soc. 1985,107, 3902.CrossRefGoogle Scholar
  14. 14.
    Vaschetto, M. E.; Retamal, B. A.; Contreras, M. L.; Zagal, J. H.; Bulhoes, L. O. S.Struct. Chem. 1995,6, 129.Google Scholar
  15. 15.
    MOPAC ver 6.0, in Insight II of Biosym Technologies, San Diego, User Guide, ver. 2.2.0, 1993.Google Scholar
  16. 16.
    Williams, V. E.; Lemieux, R. P.; Thatcher, G. R. J.J. Org. Chem. 1996,61, 1927.CrossRefGoogle Scholar
  17. 17.
    Vaschetto, M. E.Doctoral Thesis, Universidad de Santiago de Chile, 1995.Google Scholar
  18. 18.
    Dos Santos, M. C.; Brédas, J. L.Synth. Metals 1989,29, E321.CrossRefGoogle Scholar
  19. 19.
    Brett, C. M. A.; Oliveira-Brett, A.-M. C. F.; Pereira, J. L. C.; Rebelo, C.J. Appl. Electrochem. 1993,23, 332.CrossRefGoogle Scholar
  20. 20.
    Kang, E. T.; Neoh, K. G.; Ong, Y. K.; Tan, K. L.; Tan, B. T. G.Macromolecules 1991,24, 2822.CrossRefGoogle Scholar
  21. 21.
    Kang, E. T.; Neoh, K. G.; Tan, K. L.Adv. Polym. Sci. 1993,106, 135.Google Scholar
  22. 22.
    Kang, E. T.; Neoh, K. G.; Woo, Y. L.; Tan, K. L.; Huan, C. H. A.; Wee, A. T. S.Synth. Metals 1993,53, 333.CrossRefGoogle Scholar
  23. 23.
    Kang, E. T.; Neoh, K. G.; Tan, K. L.Synth. Metals 1994,64, 77.CrossRefGoogle Scholar
  24. 24.
    Koopman, T.Physica 1933,1, 104.CrossRefGoogle Scholar
  25. 25.
    Duic, L.; Mandic, Z.J. Electroanal. Chem. 1992,335, 207.CrossRefGoogle Scholar
  26. 26.
    Sjogren, B.; Stafström, S.J. Chem. Phys. 1988,88, 3840.CrossRefGoogle Scholar
  27. 27.
    Stafström, S.; Sjogren, B.; Brédas, J. L.Synth. Metals 1989,29, E219.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • M. E. Vaschetto
    • 1
  • B. A. Retamal
    • 1
  • M. L. Contreras
    • 1
  • J. H. Zagal
    • 1
  1. 1.Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations