Skip to main content
Log in

AIDS-associated neurological disorders

  • Reviews
  • Published:
Neurophysiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. J. G. Harrison and J. C. McArthur.AIDS and Neurology, Churchill-Livingstone, Edinburg (1995).

    Google Scholar 

  2. S. Koenig, H. E. Gendelman, J. M. Orenstein, et al., “Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy,”Science,233, 1089–1092 (1986).

    Google Scholar 

  3. B. A. Navia, B. D. Jordan, and R. W. Price, “The AIDS dementia complex. 1. Clinical features,”Annu. Neurol.,19, 517–524 (1986).

    Google Scholar 

  4. R. W. Price, J. Sidtis, and M. Rosenblum, “The AIDS dementia complex: some current questions,”Annu. Neurol.,23, S27-S33 (1988).

    Google Scholar 

  5. S. Ketzler, S. Weis, H. Haug, and H. Budka, “Loss of neurons in the frontal cortex in AIDS brains,”Acta Neuropathol.,80, 92–94 (1990).

    Google Scholar 

  6. I. P. Everall, P. J. Luther, and P. L. Lantos, “Neuronal loss in the frontal cortex in HIV infection,”Lancet,337, 1119–1121 (1991).

    Google Scholar 

  7. C. A. Wiley, E. Maslaih, M. Morey, et al., “Neocortical damage during HIV infection,”Annu. Neurol.,29, 651–657 (1991).

    Google Scholar 

  8. W. N. Tenhula, S. Z. Xu, M. C. Madigan, et al., “Morphometric comparisons of optic nerve axon loss in acquired immunodeficiency syndrome,”Am. J. Ophthalmol.,15, 14–20 (1992).

    Google Scholar 

  9. E. O. Freed and M. A. Martin, “The role of human immunodeficiency virus type 1 envelope glycoproteins in virus infection,”J. Biol. Chem.,270, 23883–23886 (1995).

    Google Scholar 

  10. C. D. Morrow, J. Park, and J. K. Wakefield, “Viral gene products and replication of the human immunodeficiency type 1 virus,”Am. J. Physiol.,266, C1135-C1156 (1994).

    Google Scholar 

  11. A. Roulstone, R. Lin, P. Beauparlant, et al., “Regulation of human immunodeficiency virus type 1 and cytokine gene expression in myeloid cells by NF-kB/Rel transcription factors,”Microbiol. Rev.,59, 481–505 (1995).

    Google Scholar 

  12. A. Finnegan, K. A. Roebuck, B. E. Nakai, et al., “IL-10 cooperates with TNF-alpha to activate HIV-1 from latently and acutely infected cells of monocyte/macrophage lineage,”J. Immunol.,156, 841–851 (1996).

    Google Scholar 

  13. H. S. L. M. Nottet, Y. Persidsky, V. G. Sasseville, et al., “Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain,”J. Immunol.,156, 1284–1295 (1996).

    Google Scholar 

  14. S. Weis, B. Neuhaus, and P. Mehraein, “Activation of microglia in HIV-1 infected brains is not dependent on the presence of HIV-1 antigens,”NeuroReport,5, 1514–1516 (1994).

    Google Scholar 

  15. S. A. Lipton, “Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120,”NeuroReport,3, 913–915 (1992).

    Google Scholar 

  16. S. A. Lipton, “HIV displays its coat of arms,”Nature,367, 113–114 (1994).

    Google Scholar 

  17. K. Takahashi, S. L. Wesselingh, D. E. Griffin, et al., “Localization of HIV-1 in human brain using polymerase chain reactionin situ hybridization and immunocytochemistry,”Annu. Neurol.,39, 705–711 (1996).

    Google Scholar 

  18. T. Saito, L. R. Sharer, L. G. Epstein, et al., “Overexpression of Nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues,”Neurology,44, 474–481 (1994).

    Google Scholar 

  19. C. Tornatore, R. Chandra, J. R. Berger, and E. O. Major, “HIV-1 infection of subcortical astrocytes in the pediatric central nervous system,”Neurology,44, 481–487 (1994).

    Google Scholar 

  20. S. A. Lipton and H. E. Gendelman, “Dementia associated with the acquired immunodeficiency syndrome,”New Engl. J. Med.,332, 934–940 (1995).

    Google Scholar 

  21. M. Eddleston and L. Mucke, “Molecular profile of reactive astrocytes — implication for their role in neurologic disease,”Neuroscience,54, 15–36 (1993).

    Google Scholar 

  22. D. Piani, D. B. Constam, K. Fgei, and A. Fontana, “Macrophages in the brain: friends or enemies?,”NIPS,9, 80–84 (1994).

    Google Scholar 

  23. D. Giulian, K. Vaca, and C. A. Noonan, “Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1,”Science,250, 1593–1596 (1990).

    Google Scholar 

  24. W. F. Hickey and H. Kimura, “Perivascular microglial cells of the CNS are bone marrow-derived and present antigenin vivo,”Science,239, 290–292 (1988).

    Google Scholar 

  25. E. N. Benveniste, “Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action,”Am. J. Physiol,263, C1-C16 (1992).

    Google Scholar 

  26. G. V. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,”Trends Neurosci.,19, 312–318 (1996).

    Google Scholar 

  27. P. L. McGeer, T. Kawamata, D. G. Walker, et al., “Microglia in degenerative neurological disease,”Glia,7, 84–92 (1993).

    Google Scholar 

  28. N. A. Flaris, T. L. Densmore, M. C. Molleston, and W. F. Hickey, “Characterization of microglia and macrophages in the central nervous system of rats: definition of the differential expression of molecules using standard and novel monoclonal antibodies in normal CNS and in four models of parenchymal reaction,”Glia,7, 34–50 (1993).

    Google Scholar 

  29. D. E. Brenneman, G. L. Westbrook, S. P. Fitzgerald, et al., “Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide,”Nature,335, 639–642 (1988).

    Google Scholar 

  30. E. B. Dreyer, P. K. Kaiser, J. T. Offermann, and S. A. Lipton, “HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists,”Science,248, 364–367 (1990).

    Google Scholar 

  31. S. A. Lipton, N. J. Sucher, P. K. Kaiser, and E. B. Dreyer, “Synergistic effects of HIV coat protein and NMDA receptormediated neurotoxicity,”Neuron,7, 111–118 (1991).

    Google Scholar 

  32. T. Savio and G. Levi, “Neurotoxicity of HIV coat protein gp120, NMDA receptors, and protein kinase C: a study with rat cerebellar granule cell cultures,”J. Neurosci. Res.,34, 265–272 (1993).

    Google Scholar 

  33. D. Aggoun-Zouaoui, C. Charriaut-Marlangue, S. Rivera, et al., “The HIV-1 envelope protein gp120 induces neuronal apoptosis in hippocampal slices,”NeuroReport,7, 433–436 (1996).

    Google Scholar 

  34. S. M. Toggas, E. Masliah, E. M. Rockenstein, et al., “Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice,”Nature,367, 188–193 (1994).

    Google Scholar 

  35. S. A. Lipton, “Models of neuronal injury in AIDS: another role for the NMDA receptor?,”Trends Neurosci.,15, 75–79 (1992).

    Google Scholar 

  36. V. L. Dawson, T. M. Dawson, G. R. Uhl, and S. H. Snyder, “Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures,”Proc. Natl. Acad. Sci. USA,90, 3256–3259 (1993).

    Google Scholar 

  37. S. C. Lee, D. W. Dickson, W. Liu, and C. F. Brosnan, “Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon gamma,”J. Neuroimmunol.,46, 19–24 (1993).

    Google Scholar 

  38. D. Pietraforte, E. Tritarelli, U. Testa, and M. Minetti, “gp120 HIV envelope glycoprotein increases the production of nitric oxide in human monocyte-derived macrophages,”J. Leukocyte Biol.,55, 175–182 (1994).

    Google Scholar 

  39. M. Munir, L. Lu, and P. McGonigle, “Exicytotoxic cell death and delayed rescue in human neurones derived from NT2 cells,”J. Neurosci.,15, 7847–7860 (1995).

    Google Scholar 

  40. P. Wu, P. Price, B. Du, et al., “Direct cytotoxicity of HIV-1 envelope protein gp120 on human NT neurons,”NeuroReport,7, 1045–1049 (1996).

    Google Scholar 

  41. D. S. Robbins, Y. Shirazi, B. E. Drysdale, et al., “Production of cytotoxic factors for oligodendrocytes by stimulated astrocytes,”J. Immunol.,139, 2593–2597 (1987).

    Google Scholar 

  42. S. N. Wahl, J. B. Allen, N. McCartney-Frencis, et al., “Macrophage-and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome,”J. Exp. Med., 981–991 (1991).

  43. P. Gallo, K. Frei, C. Rordorf, et al., “Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system: an evaluation of cytokines in cerebrospinal fluid,”J. Neuroimmunol.,23, 109–116 (1989).

    Google Scholar 

  44. J. E. Merril and O. Martinez-Maza, “Cytokines in AIDS-associated neurons and immune system dysfunction,” in:Neurobiology of Cytokines, Part B, Methods in Neuroscience, E. B. DeSouza (ed.), Acad. Press, Inc., San Diego, CA (1993), pp. 243–266.

    Google Scholar 

  45. W. R. Tyor, J. D. Glass, J. W. Griffin, et al., “Cytokine expression in the brain during the acquired immuno deficiency syndrome,”Annu. Neurol.,31, 349–360 (1992).

    Google Scholar 

  46. K. W. Selmaj and C. S. Raine, “Tumor necrosis factor mediates myelin and oligodendrocyte damagein vitro,”Annu. Neurol.,23, 339–346 (1988).

    Google Scholar 

  47. W. S. T. Griffin, L. Stanley, C. Ling, et al., “Brain interleukin-1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer's disease,”Proc. Natl. Acad. Sci. USA,86, 7611–7615 (1989).

    Google Scholar 

  48. H. A. Gelbard, H. S. L. M. Nottet, S. Swindells, et al., “Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin,”J. Virol.,68, 4628–4635 (1994).

    Google Scholar 

  49. P. Genis, M. Jett, E. W. Bernton, et al., “Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease,”J. Exp. Med.,176, 1703–1718 (1992).

    Google Scholar 

  50. J. E. Merrill and E. N. Benveniste, “Cytokines in inflammatory brain lesions: helpful and harmful,”Trends Neurosci.,16, 331–338 (1996).

    Google Scholar 

  51. S. J. Hopkins and N. J. Rothwell, “Cytokines and the nervous system I: expression and recognition,”Trends Neurosci.,18, 83–87 (1995).

    Google Scholar 

  52. N. J. Rothwell and S. J. Hopkins, “Cytokines and the nervous system II: actions and mechanisms of action,”Trends Neurosci.,18, 130–136 (1995).

    Google Scholar 

  53. N. Sakai S. Kaufman, and S. Milstien, “Parallel induction of nitric oxide and tetrahydrobiopterin synthesis by cytokines in rat glial cells,”J. Neurochem.,65, 895–902 (1995).

    Google Scholar 

  54. H. S. L. M. Nottet, M. Jett, C. R. Flanagan, et al., “Regulatory role for astrocytes in HIV-1 encephalitis: an overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factoralpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes,”J. Immunol.,154, 3567–3561 (1995).

    Google Scholar 

  55. P. Shrikant, D. J. Benos, L. P. Tang, and E. N. Benveniste, “HIV glycoprotein 120 enhances intercellular adhesion molecule-1 gene expression in glial cells,”J. Immunol.,156, 1307–1314 (1996).

    Google Scholar 

  56. Y. Shao and K. D. McCarthy, “Plasticity of astrocytes,”Glia,11, 147–155 (1994).

    Google Scholar 

  57. J. S. Rudge, “Astrocyte-derived neurotrophic factors,” in:Astrocytes: Pharmacology and Function, S. M. Murphy (ed.), Academia, New York (1993), pp. 267–305.

    Google Scholar 

  58. S. M. De La Monte, D. D. Ho, R. T. Schooley, et al., “Subacute encephalomyelitis of AIDS and its relation to HTLV-III infection,”Neurology,37, 562–569 (1987).

    Google Scholar 

  59. S. A. Lipton and P. A. Rosenberg, “Excitatory amino acids as a final common pathway for neurologic disorders,”New Engl. J. Med.,330, 613–622 (1994).

    Google Scholar 

  60. K. Sugiyama, A. Brunori, and M. L. Mayer, “Glial uptake of excitatory amino acids influences neuronal survival in cultures of mouse hippocampus,”Neuroscience,32, 779–791 (1989).

    Google Scholar 

  61. P. A. Rosenberg, S. Amin, and M. Leitner, “Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture,”J. Neurosci.,12, 56–61 (1992).

    Google Scholar 

  62. P. A. Rosenberg and E. Aizenman, “Hundred-fold increase in neuronal vuinerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex,”Neurosci. Lett.,103, 162–168 (1989).

    Google Scholar 

  63. D. W. Choi, “Glutamate neurotoxicity and diseases of the nervous system,”Neuron,1, 623–634 (1988).

    Google Scholar 

  64. G. L. Collingridge and W. Singer, “Excitatory amino acids and synaptic plasticity,”Trends Pharmacol. Sci.,11, 290–296 (1990).

    Google Scholar 

  65. T. V. Bliss and G. L. Collingridge, “A synaptic model of memory: long term potentiation in the hippocampus,”Nature,361, 31–39 (1993).

    Google Scholar 

  66. M. L. Mayer and G. L. Westbrook, “The physiology of excitatory amino acids in the vertebrate nervous system,”Prog. Neurobiol.,28, 197–276 (1987).

    Google Scholar 

  67. M. Hollmann, M. Hartley, and S. Heinemann, “Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition,”Science,252, 851–853 (1991).

    Google Scholar 

  68. W. E. G. Muller, H. C. Schroder, H. Ushijima, et al., “gp120 of HIV-1 induced apoptosis in rat cortical cell cultures: prevention by memantine,”Eur. J. Pharmacol.,226, 209–214 (1992).

    Google Scholar 

  69. S. A. Lipton, “Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide,”Trends Neurosci.,16, 527–532 (1993).

    Google Scholar 

  70. S. A. Lipton, “Neuronal injury associated with HIV-1 and potential treatment with calcium channel and NMDA antagonists,”Dev. Neurosci.,16, 145–151 (1994).

    Google Scholar 

  71. R. H. P. Porter and T. Greenamyre, “Regional variations in the pharmacology of NMDA receptor channel blockers: implications of therapeutic potential,”J. Neurochem.,64, 614–623 (1995).

    Google Scholar 

  72. M. Kessler, T. Terramani, G. Linch, and M. Baudry, “A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists,”J. Neurochem.,52, 1319–1328 (1989).

    Google Scholar 

  73. T. W. Stone, “Neuropharmacology of quinolinic and kynurenic acids,”Pharmacol. Rev.,45, 309–379 (1993).

    Google Scholar 

  74. H. Q. Wu, H. Baran, U. Ungerstedt, and R. Schwarcz, “Kynurenic acid in the quinolinate-lesioned rat hippocampus: studiesin vitro andin vivo,”Eur. J. Neurosci.,4, 1264–1270 (1992).

    Google Scholar 

  75. M. P. Heyes, B. J. Brew, A. Martin, et al., “Quinolic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status,”Annu. Neurol.,29, 202–209 (1991).

    Google Scholar 

  76. D. A. Bender, “The kynurenine pathway of tryptophan metabolism,” in:Quinolinic Acid and Kynurenines, T. W. Stone (ed.), CRC Press, Boca Raton, FL (1989), pp. 3–38.

    Google Scholar 

  77. S. A. Lipton, “7-Chlorokynurenate ameliorates neuronal injury mediated by HIV envelope protein gp120 in rodent retinal cultures,”Eur. J. Neurosci.,4, 1411–1415, (1992).

    Google Scholar 

  78. P. Guidetti, C. L. Eastman, and R. Schwarcz, “Metabolism of [5-3H] kynurenine in the rat brainin vivo: evidence for the existence of a functional kynurenine pathway,”J. Neurochem.,65, 2621–2632 (1995).

    Google Scholar 

  79. D. B. Naritsin, K. Saito, S. P. Markey, et al., “Metabolism of L-tryptophan to kynurenate and quinolinate in the central nervous system: effects of 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate,”J. Neurochem.,65, 2217–2226 (1995).

    Google Scholar 

  80. K. H. Jhamandas, R. J. Boegman, and R. J. Beninger, “Quinolinic acid induced brain neurotransmitter deficits: modulation by endogenous excitotoxin antagonists,”Can. J. Physiol. Pharmacol,72 1473–1482 (1994).

    Google Scholar 

  81. A. M. Sardar, J. E. Bell, and G. P. Reynolds, “Increased concentrations of the neurotoxin 3-hydroxykynurenine in the frontal cortex of HIV-1-positive patients,”J. Neurochem.,64, 932–935 (1995).

    Google Scholar 

  82. A. Frandsen and A. Schousboe, “Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate and kainate in cultured cerebral cortical neurons,”Proc. Natl. Acad. Sci. USA,89, 2590–2594 (1992).

    Google Scholar 

  83. S. A. Lipton, “Calcium channei antagonists in the prevention of neurotoxicity,”Adv. Pharmacol.,22, 271–297 (1991).

    Google Scholar 

  84. A. C. Dolphin, “Voitage-dependent calcium channels and their modulation by neurotransmitters and G proteins,”Exp. Physiol.,80, 1–36 (1995).

    Google Scholar 

  85. M. F. Beal, “Mechanisms of excitotoxicity in neurologic disease,”FASEB J.,6, 3338–3344 (1992).

    Google Scholar 

  86. J. B. Schulz, D. R. Henshaw, D. Siwek, et al., “Involvement of free radicals in excitotoxicityin vivo,”J. Neurochem.,64, 2239–2247 (1995).

    Google Scholar 

  87. J. Meldolesi, P. Vope, and T. Pozzan, “Intracellular distribution of calcium,”Trends Neurosci.,11, 449–452 (1988).

    Google Scholar 

  88. M. B. Kennedy, “Regulation of neuronal function by calcium,”Trends Neurosci.,12, 417–420 (1989).

    Google Scholar 

  89. S. S. Schreiber and M. Baudry, “Selective neuronal vulnerability in the hippocampus — a role for gene expression?,”Trends Neurosci.,18, 446–451 (1995).

    Google Scholar 

  90. A. M. Davies, “The Bcl-2 family of proteins, and the regulation of neuronal survival,”Trends Neurosci.,18, 355–358 (1995).

    Google Scholar 

  91. J. T. Coyle and P. Puttfarcken, “Oxidative stress, glutamate, and neurodegenerative disoders,”Science,162, 689–695 (1993).

    Google Scholar 

  92. M. Lafon-Cazal, S. Pietri, M. Culcasi, and J. Bockaert, “NMDA-dependent superoxide production and neurotoxicity,”Nature,364, 535–537 (1993).

    Google Scholar 

  93. C. W. Olanov, “A radical hypothesis for neurodegeneration,”Trends Neurosci.,16, 439–444 (1993).

    Google Scholar 

  94. M. A. Smith, L. M. Sayre, V. M. Monnier, and G. Perry, “Radical ageing in Alzheimer's disease,”Trends Neurosci.,18, 172–176 (1995).

    Google Scholar 

  95. J. B. Schulz, D. R. Henshaw, D. Siwek, et al., “Involvement of free radicals in excitotoxicityin vivo,”J. Neurochem.,64, 2239–2247 (1995).

    Google Scholar 

  96. P. Nicotera, G. Bellomo, and S. Orrenius, “Calcium-mediated mechanisms in chemically induced cell death,”Annu. Rev. Pharmacol.,32, 449–470 (1992).

    Google Scholar 

  97. J. P. Reeves, C. A. Bailey, and C. C. Hale, “Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles,”J. Biol. Chem.,261, 4948–4955 (1986).

    Google Scholar 

  98. T. T. Rohn, T. R. Hinds, and F. F. Vincenzi, “Ion transport ATPases as targets for free radical damage,”Chem. Pharmacol.,46, 525–534 (1993).

    Google Scholar 

  99. F. Haber and J. Weiss, “The catalytic decomposition of hydrogen peroxide by iron salts,”Proc. Roy. Soc. Lond. Ser. A,147, 332–351 (1934).

    Google Scholar 

  100. M. Gerlach, D. Ben-Shachar, P. Riederer, and M. B. H. Youdim, “Altered brain metabolism of iron as a cause of neurodegenerative diseases?,”J. Neurochem.,63, 793–807 (1994).

    Google Scholar 

  101. B. Halliwell, “Reactive oxygen species and the central nervous system,”J. Neurochem.,59, 1609–1623 (1992).

    Google Scholar 

  102. C. Thery, B. Chamak, and M. Mallat, “Cytotoxic effect of brain macrophages on developing neurons,”Eur. J. Neurosci.,3, 1155–1164 (1991).

    Google Scholar 

  103. T. D. Buckman, M. S. Sutphin, and B. Mitovic, “Oxidative stress in a clonal cell line of neuronal origin: effect of antioxidant enzyme modulation,”J. Neurochem.,60, 2046–2058 (1993).

    Google Scholar 

  104. S. Desagher, J. Glowsinski, and J. Premont, “Astrocytes protect neurons from hydrogen peroxide toxicity,”J. Neurosci.,16, 2553–2562 (1996).

    Google Scholar 

  105. M. A. Verity, “Mechanisms of phospholipase A2 activation and neuronal injury,”Ann. New York Acad. Sci.,679, 110–120 (1993).

    Google Scholar 

  106. P. H. Chan, R. Kerlan, and R. A. Fishman, “Reduction of gamma-aminobutyric acid and glutamate uptake and (Na+-K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid,”J. Neurochem.,40, 309–316 (1983).

    Google Scholar 

  107. B. Miller, M. Sarantis, S. F. Traynelis, and D. Attwell, “Potentiation of NMDA receptors by arachidonic acid,”Nature,355, 722–725 (1992).

    Google Scholar 

  108. G. D. Clark, L. T. Happel, C. F. Zorumski, and N. G. Bazan, “Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor,”Neuron,9, 1211–1216 (1992).

    Google Scholar 

  109. H. Bito, M. Nakamura, Z. Honda, et al., “Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons,”Neuron,9, 285–294 (1992).

    Google Scholar 

  110. S. A. Lipton, Y.-B. Choi, Z.-H. Pan, et al., “A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds,”Nature,364, 626–632 (1993).

    Google Scholar 

  111. V. L. Dawson, T. M. Dawson, D. A. Bartley, et al., “Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures,”J. Neurosci.,13, 2651–2661 (1993).

    Google Scholar 

  112. H. Koprowski, Y. M. Zheng, E. Heber-Katz, et al., “In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases,”Proc. Natl. Acad. Sci. USA,90, 3024–3027 (1993).

    Google Scholar 

  113. M. I. Bukrinsky, H. S. L. M. Nottet, H. Schmidtmayerova, et al., “Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease,”J. Exp. Med.,181, 735–745 (1995).

    Google Scholar 

  114. E. N. Benveniste, “Cytokine circuits in brain: implications for AIDS dementia complex,” in:HIV, AIDS, and the Brain, R. W. Price and S. W. Perry (eds.), Raven Press, New York (1994), pp. 71–80.

    Google Scholar 

  115. D. Giulian, E. Wendt, K. Vaca, and C. A. Noonan, “The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes,”Proc. Natl. Acad. Sci. USA,90, 2769–2773 (1993).

    Google Scholar 

  116. D. E. Brenneman, T. Nicol, D. Warren, and L. M. Bowers, “Vasoactive intestinal peptide: a neurotrophic releasing agent and an astroglial mitogen,”J. Neurosci. Res.,25, 386–394 (1990).

    Google Scholar 

  117. D. J. Benos, B. H. Hahn, J. K. Bubien, et al., “Envelope glycoprotein gp120 of human immunodeficiency virus type 1 alters ion transport in astrocytes: implications for AIDS dementia complex,”Proc. Natl. Acad. Sci. USA,91, 494–498 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Neirofiziologiya/Neurophysiology, Vol. 28, No. 4/5, pp. 225–234, July–October, 1996.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magura, I.S., Rozhmanova, O.M. AIDS-associated neurological disorders. Neurophysiology 28, 178–186 (1996). https://doi.org/10.1007/BF02262781

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02262781

Navigation