, Volume 77, Issue 3, pp 231–237 | Cite as

Breeding winter hardy grasses

  • Arild Larsen


Perennial grasses are vital for Norwegian agricultural production. The nature and extent of winter damage on grasslands is highly dependent on climatic conditions, and determines both persistency and yield. Physical stresses such as frost and ice encasement predominate in coastal regions with an unstable winter climate, while biotic stresses such as low temperature fungi are more common in the inland regions. Development of hardening depends on plant adaptation and climatic conditions during autumn and winter. New winter-hardy cultivars should be bred for wide adaptation to winter stresses. The genetic background for the most important character, freezing tolerance, seems to be of polygenic nature with mainly additive gene action. Selection for increased freezing tolerance has been effective over generations in grasses, and in most grass species ample variation still exists to be exploited by breeding. However, in some species like perennial ryegrass, modern biotechnological methods should be used to improve freezing tolerance and winter hardiness.

Key words

Grasses winter hardiness freezing tolerance ice encasement snow moulds hardening breeding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, I.L., 1960. Overvintringsundersøkelser i eng i Nord-Norge. I. Forsk. Fors. Landbr. 11: 635–660.Google Scholar
  2. Andersen, I.L., 1963. Overvintringsundersøkelser i eng i Nord-Norge. II. Forsk. Fors. Landbr. 14: 639–669.Google Scholar
  3. Andersen, I.L., 1966. Overvintringsundersøkelser i eng i Nord-Norge. III. Forsk. Fors. Landbr. 17: 1–20.Google Scholar
  4. Årsvoll, K., 1973. Winter damage in Norwegian grasslands, 1968–1971. Meld. Norg. LandbrHøgsk. 52 (3), 21 pp.Google Scholar
  5. Årsvoll, K., 1975. Fungi causing winter damage on cultivated grasses in Norway. Meld. Norg. LandbrHøgsk. 54 (9), 49 pp.Google Scholar
  6. Brule-Babel, A.L., & D.B. Fowler, 1988. Genetic control of cold hardiness and vernalization requirement in winter wheat. Crop Sci. 28: 879–884.Google Scholar
  7. Brule-Babel, A.L., & D.B. Fowler, 1989. Genetic control of cold hardiness and vernalization requirement in rye. Genome 32: 19–23.Google Scholar
  8. Eagles, C.F., 1984. Effect of temperature on hardening and dehardening responses inLolium. In: H. Riley & A.O. Skjelvåg (Eds) The Impact of Climate on Grass Production and Quality, Proc. of the 10th General Meeting of the EGF. The Norwegian State Agricultural Research Stations: 287–291.Google Scholar
  9. Eagles, C.F. & J. Williams, 1992. Hardening and Dehardening ofLolium perenne in Response to Fluctuating Temperatures. Annals of Botany 70: 333–338.Google Scholar
  10. Galiba, G. & J. Sutka, 1989. Frost resistance of somadones derived fromTriticum aestivum L. winter wheat calli. Plant Breeding 102: 101–104.Google Scholar
  11. Gullord, M. 1974. Genetics of freezing hardiness in winter wheat (Tritium aestivum L.) Ph.D. dissertation. Michigan State University: 70 pp.Google Scholar
  12. Hjortsholm, K., 1993. Comparisons of different laboratory methods testing winter hardiness in cereals. Röbäcksdalen meddeler. Rapport 11: 1993, 127–128.Google Scholar
  13. Houde, M., S.D. Rajinder & F. Sarhan, 1992. A molecular marker to select for freezing tolerance in Gramineae. Mol. Gen. Genet. 234: 43–48.Google Scholar
  14. Humphreys, M.O., 1993. Genetic resources for improved climatic adaptation within the ryegrass/fescue complex. In: D. Wilson, H. Thomas & K. Pithan (Eds) COST, Crop Adaptation to Cool, Wet, Climates, Aberystwyth, Great Britain, pp. 281–287.Google Scholar
  15. Larsen, A., 1979. Freezing tolerance in grasses. Variation within populations and response to selection. Meld. Norg. LandbrHøgsk. 58 (42): 28 pp.Google Scholar
  16. Larsen, A., 1985. Response to selection for freezing tolerance and associated effects on vegetative growth inDactylis glomerata. In: É. Kaurin, O. Junttila & J. Nilsen (Eds) Plant Production in the North. Norwegian Univ. Press: 116–126.Google Scholar
  17. Larsen, A., 1989. Foredling for overvintringsvne hos engvekster, Norsk landbruksforskning. Supplement No. 5 1989: 75–80.Google Scholar
  18. Larsen, A. & A. M. Tronsmo 1991. Seleksjon for resistens mot overvintringssopp i engelsk raigras (Lolium perenne L.). Nordisk Jordbruksforskning 73: 516.Google Scholar
  19. Larsen, A & A.M. Tronsmo, 1991. Natural hardening in grasses, Sveriges Lantbruksuniversitet Raporter Nr. 53. The 4th Plant Cold Hardiness Seminar, 26.Google Scholar
  20. Lazar, M.D., T.H.H. Chen, L.V. Gusta & K.K. Kartha, 1988. Somadonal variation for freezing tolerance in a population derived from Norstar winter wheat. Theor. Appl. Genet. 75: 480–484.Google Scholar
  21. Parodi, P.C., W.E. Nyquist, F.L. Patterson & H.F. Hodges, 1983. Traditional combining-ability and Gardner-Eberhart analysis of a diallel for cold resistance in winter wheat. Crop Sci. 23: 314–318.Google Scholar
  22. Sterten, A.K., 1952. Melding om undersøkelser over engvekstenes overvintring. I. Undersøkelser i tiden fra 1949 til vñren 1951. Forskn. Fors. Landbr. 3: 31–47.Google Scholar
  23. Sutka, J., 1981. Genetic studies of frost resistance in wheat. Theor. Appl. Genet. 59: 145–152.Google Scholar
  24. Sutka, J., O. Veisz & G. Kovacs, 1986. Genetic analysis of the frost resistance and winter hardiness of wheat under natural and artificial conditions. Acta. Agron. Scient. Hungarica 35: 227–234.Google Scholar
  25. Tronsmo, A.M., 1993. Resistance to winter stress factors in half-sib families ofDactylis glomerata, tested in a controlled environment. Acta Agric. Scand., Sect. B, Soil and Plant Sci. 43: 89–96.Google Scholar

Copyright information

© Kluwer Academic Publishers 1974

Authors and Affiliations

  • Arild Larsen
    • 1
  1. 1.Norwegian State Agriculture Research StationsBODØNorway

Personalised recommendations