, Volume 18, Issue 7, pp 353–361 | Cite as

Mobile phase effects in reversed-phase chromatography VI. Thermodynamic models for retention and its dependence on mobile phase composition and temperature

  • W. R. Melander
  • Cs. Horváth


The physico-chemical framework is examined by comparing the predictions of three models for the combined effects of the composition of the hydroorganic mobile phase and the column temperature on the retention ofn-alkylbenzenes on hydrocarbonaceous bonded stationary phases. The “well-mixed” model leads to expressions for the dependence of retention on three factors which are equivalent to those derived previously from linear extrathermodynamic relationships. The “diachoric” model stems from the assumption that the mobile phase is microscopically heterogeneous and the “displacement” model is identical to the retention model most widely used in chromatography with polar sorbents and less polar solvents. Over limited ranges of mobile phase composition and temperature, each model does describe retention behavior. However, only the wellmixed model describes retention well over the entire range of mobile phase composition and temperature studied here. The success of the well-mixed model, and its limits, give insight into the role of the organic solvent in determining the magnitude of chromatographic retention on non-polar stationary phases with hydro-organic eluents.

Key Words

Retention mechanism Reversed-phase chromatography Retention thermodynamics Mobile phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. R. Melander, B.-K. Chen, Cs. Horváth, J. Chromatogr.,185, 99–109 (1979).Google Scholar
  2. [2]
    W. R. Melander, A. Nahum, Cs. Horváth, J. Chromatogr.,185, 129–152 (1979).Google Scholar
  3. [3]
    W. R. Melander, Cs. Horváth, J. Jacobson, J. Chromatogr.,234, 269–276 (1982).Google Scholar
  4. [4]
    A. Nahum, Cs. Horváth, J. Chromatogr.,203, 53–63 (1981).Google Scholar
  5. [5]
    K. E. Bij, Cs. Horváth, W. R. Melander, A. Nahum, J. Chromatogr.,203, 65–84 (1981).Google Scholar
  6. [6]
    Cs. Horváth, W. Melander, I. Molnár, J. Chromatogr.,125, 129 (1976).Google Scholar
  7. [7]
    B. L. Karger, J. R. Gant, A. Hartkopf, P. Weiner, J. Chromatogr.,128, 65 (1976).Google Scholar
  8. [8]
    L. R. Snyder, J. W. Dolan, J. R. Gant, J. Chromatogr.,165, 3 (1979).Google Scholar
  9. [9]
    W. R. Melander, Cs. Horváth, in: High Performance Liquid Chromatography, Vol. 2,Cs. Horváth, ed., Academic Press, New York, 1980, pp. 114–319.Google Scholar
  10. [10]
    W. Melander, D. E. Campbell, Cs. Horváth, J. Chromatogr.,158, 215–225 (1978).Google Scholar
  11. [11]
    H. Colin, J. C. Diez-Masa, G. Guiochon, T. Czajkowska, I. Miedziak, J. Chromatogr.,167, 41 (1978).Google Scholar
  12. [12]
    L. R. Snyder, J. Chromatogr.,179, 167 (1979).Google Scholar
  13. [13]
    C. M. Riley, E. Tomlinson, T. M. Jefferies, J. Chromatogr.,185, 197 (1979).Google Scholar
  14. [14]
    P. J. Schoenmakers, H. A. H. Billiet, L. de Galan, J. Chromatogr.,185, 179 (1979).Google Scholar
  15. [15]
    D. C. Locke, J. Chromatogr. Sci.,12, 433 (1974).Google Scholar
  16. [16]
    D. C. Locke, in: Advances in Chromatography, Vol. 14,J. C. Giddings, E. Grushka, J. Cazes andP. R. Brown, eds., Marcel Dekker, 1976, pp. 87–198.Google Scholar
  17. [17]
    N. L. Ha, J. Ungvarai, E. sz. Kováts, Anal. Chem.,54, 2410 (1982).Google Scholar
  18. [18]
    W. R. Melander, J.-X. Huang, Cs. Horváth, in preparation.Google Scholar
  19. [19]
    J. F. K. Huber, E. Kendler, H. Markens, J. Chromatogr.,167, 291 (1978).Google Scholar
  20. [20]
    J. H. Hildebrand, J. M. Prausnitz, R. L. Scott, Regular and Related Solution, Van Nostrand Reinhold, New York, 1970.Google Scholar
  21. [21]
    J. H. Purnell, J. M. Vargas de Andrnde, J. Amer. Chem. Soc.,97, 3585 (1975).Google Scholar
  22. [22]
    R. J. Laub, J. H. Purnell, J. Amer. Chem. Soc.,98, 30 (1975).Google Scholar
  23. [23]
    L. R. Snyder, Principles of Adsorption Chromatography, Marcel Dekker, New York, 1968.Google Scholar
  24. [24]
    L. R. Snyder, in: Chromatography, 3rd ed.,E. Heftmann, ed., van Nostrand Reinhold, New York, 1975, pp. 46–76.Google Scholar
  25. [25]
    M. McCann, H. Purnell, C. A. Wellington, Faraday Society Symposium,15, 83 (1980).Google Scholar
  26. [26]
    I. Langmuir, J. Amer. Chem. Soc.,38, 2221 (1916).Google Scholar
  27. [27]
    W. R. Melander, C. A. Mannan, Cs. Horváth, Chromatographia,15, 611 (1982).Google Scholar
  28. [28]
    R. M. McCormick, B. L. Karger, J. Chromatogr.,199, 259 (1980).Google Scholar
  29. [29]
    E. H. Slaats, W. Markovski, J. Fekete, H. Poppe, J. Chromatogr.,207, 299 (1980).Google Scholar
  30. [30]
    O. Sinanoǵlu, in: Molecular Associations in Biology,B. Pullman, ed., Academic Press, New York, 1968, pp. 427–445.Google Scholar
  31. [31]
    O. Sinanoǵlu, in: Molecular Interactions, Vol. 3,H. Ratajczak andW. J. Orville-Thomas, eds., Wiley, New York, 1982, pp. 281–342.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1984

Authors and Affiliations

  • W. R. Melander
    • 1
  • Cs. Horváth
    • 1
  1. 1.Department of Chemical EngineeringYale UniversityNew HavenUSA

Personalised recommendations