Algebra and Logic

, Volume 31, Issue 6, pp 367–377 | Cite as

p-Pseudosimple algebras

  • A. G. Pinus
  • A. J. Denisov


Mathematical Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Andreka and J. Nemeti, “On the congruence lattice of pseudo-simple algebras,” in:Contributions to Universal Algebra, North-Holland, Amsterdam (1977), pp. 15–20.Google Scholar
  2. 2.
    H. Andreka and J. Nemeti, “Similarity types, pseudo-simple algebras and congruence representations of chains,”Alg. Univ.,13, No. 2, 293–306 (1981).Google Scholar
  3. 3.
    D. Monc, “On pseudo-simple universal algebras,”Proc. Amer. Math. Soc.,13, 543–546 (1962).Google Scholar
  4. 4.
    A. G. Pinus, “On quasisimple algebras,” in:Studies of Algebraic Systems vs Properties of Their Subsystems [in Russian], Sverdlovsk (1987), pp. 108–118.Google Scholar
  5. 5.
    S. Burris, “Boolean powers,”Alg. Univ.,5, No. 3, 341–360 (1975).Google Scholar
  6. 6.
    A. G. Pinus,Congruence-Modular Varieties of Algebras [in Russian], Irkutsk. Gos. Univ., Irkutsk (1986).Google Scholar
  7. 7.
    A. G. Pinus, “The spectrum of rigid systems of Horn classes,”Sib. Mat. Zh.,22, No. 5 (1981).Google Scholar
  8. 8.
    E. Fried, G. Grätzer, and R. Quackenbush, “Uniform congruence schemes,”Alg. Univ.,10, No. 2, 176–189 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. G. Pinus
  • A. J. Denisov

There are no affiliations available

Personalised recommendations