Algebra and Logic

, Volume 31, Issue 6, pp 367–377 | Cite as

p-Pseudosimple algebras

  • A. G. Pinus
  • A. J. Denisov


Mathematical Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Andreka and J. Nemeti, “On the congruence lattice of pseudo-simple algebras,” in:Contributions to Universal Algebra, North-Holland, Amsterdam (1977), pp. 15–20.Google Scholar
  2. 2.
    H. Andreka and J. Nemeti, “Similarity types, pseudo-simple algebras and congruence representations of chains,”Alg. Univ.,13, No. 2, 293–306 (1981).Google Scholar
  3. 3.
    D. Monc, “On pseudo-simple universal algebras,”Proc. Amer. Math. Soc.,13, 543–546 (1962).Google Scholar
  4. 4.
    A. G. Pinus, “On quasisimple algebras,” in:Studies of Algebraic Systems vs Properties of Their Subsystems [in Russian], Sverdlovsk (1987), pp. 108–118.Google Scholar
  5. 5.
    S. Burris, “Boolean powers,”Alg. Univ.,5, No. 3, 341–360 (1975).Google Scholar
  6. 6.
    A. G. Pinus,Congruence-Modular Varieties of Algebras [in Russian], Irkutsk. Gos. Univ., Irkutsk (1986).Google Scholar
  7. 7.
    A. G. Pinus, “The spectrum of rigid systems of Horn classes,”Sib. Mat. Zh.,22, No. 5 (1981).Google Scholar
  8. 8.
    E. Fried, G. Grätzer, and R. Quackenbush, “Uniform congruence schemes,”Alg. Univ.,10, No. 2, 176–189 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. G. Pinus
  • A. J. Denisov

There are no affiliations available

Personalised recommendations