Algebra and Logic

, Volume 31, Issue 6, pp 360–366 | Cite as

A question of L. A. Shemetkov

  • V. D. Mazurov


Mathematical Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hall,The Theory of Groups, New York (1959).Google Scholar
  2. 2.
    P. Hall, “Theorems like Sylow's,”Proc. London Math. Soc.,6, No. 22, 286–304 (1956).Google Scholar
  3. 3.
    H. Wielandt, “Zum Satz von Sylow,”Math. Z.,60, 407–408 (1954).Google Scholar
  4. 4.
    L. A. Shemetkov, “Sylow properties of finite groups,”Mat. Sbornik,76 (118), No. 2, 271–287 (1968).Google Scholar
  5. 5.
    L. A. Shemetkov, “On Sylow properties of finite groups,”Dokl. Akad. Nauk BSSR,16, No. 10, 881–883 (1972).Google Scholar
  6. 6.
    The Kourovka Notebook. Unsolved Problems in Group Theory,Am. Math. Soc. Transl. Ser. 2.,121. Providence R.I. (1983).Google Scholar
  7. 7.
    S. A. Rusakov, “Analogs of Sylow theorem about the existence and embedding of subgroups,”Sib. Mat. Zh.,4, No. 2, 325–341 (1963).Google Scholar
  8. 8.
    W. Feit and J. G. Thompson, “Solvability of groups of odd order,”Pac. J. Math.,13, No. 13, 775–1029 (1963).Google Scholar
  9. 9.
    R. Steinberg, “Endomorphisms of linear algebraic groups,”Mem. Am. Math. Soc., 80 (1968).Google Scholar
  10. 10.
    D. Gorenstein and R. Lyons, “The local structure of finite groups of characteristic 2 type,”Mem. Am. Math. Soc.,42, No. 276 (1983).Google Scholar
  11. 11.
    J. H. Conway, R. T. Curtis, S. P. Norton, et al.,Atlas of Finite Groups, Oxford (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. D. Mazurov

There are no affiliations available

Personalised recommendations