Advertisement

Chromatographia

, Volume 29, Issue 7–8, pp 375–384 | Cite as

Discrimination between linear and non-linear models describing retention data of alkylbenzenes in gas-chromatography

  • K. Héberger
Originals

Summary

Detailed statistical analysis is presented to describe the retention indices of alkylbenzenes as a function of their physical (boiling point, modrefraction) and topological (connectivity and complexity indices) properties. With the help of several statistical characteristics (examination of residuals, F test, partial F test, termination criteria, correlation indices) a discrimination is made among different models. A nonlinear equation was chosen which describes the retention data on slightly polar phases with the practically attainable precision. A comparison with literature sources shows that this equation provides the smallest residual error and, hence, it can be applied for prediction purposes. A correlation was found between the preexponential factor in the simple exponential model and the polarity of stationary phases on the Tarján scale.

Key Words

Gas-chromatography Quantitative structure-retention relationships Kováts retention index Alkylaromatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Kaliszan, Quantitative Structure Chromatographic Retention Relationships, John Wiley & Sons, New York, 1987; Chapter 1, pp. 1–5.Google Scholar
  2. [2]
    V. M. Nabivach, A. V. Kirilenko, Chromatographia13, 93 (1980).CrossRefGoogle Scholar
  3. [3]
    F. Saura-Calixto, A. Garcia-Raso, Chromatographia15, 521 (1982).CrossRefGoogle Scholar
  4. [4]
    F. Bermejo, J. S. Canga, O. M. Gayol, Intern. Environ. Anal. Chem.11, 271 (1982).Google Scholar
  5. [5]
    F. Saura-Calixto, A. Garcia-Raso, J. Cañellas, Anal. Quim.79, 411 (1983).Google Scholar
  6. [6]
    J. Bermejo, J. S. Canga, O. M. Gayol, M. D. Guillén, J. Chromatogr. Sci.22, 252 (1984).Google Scholar
  7. [7]
    F. Saura-Calixto, A. Garcia-Raso, Intern. J. Environ. Anal. Chem.17, 279 (1984).Google Scholar
  8. [8]
    M. Gassiot-Matas, G. Firpo-Pamies, J. Chromatogr.187, 1 (1980).CrossRefGoogle Scholar
  9. [9]
    J. Bermejo, M. D. Guillén, Chromatographia17, 664 (1983).CrossRefGoogle Scholar
  10. [10]
    J. Bermejo, M. D. Guillén, J. High Resolut. Chrom. & Chrom. Commun.7, 191 (1984).Google Scholar
  11. [11]
    J. Bermejo, M. D. Guillén, Intern. J. Environ. Anal. Chem.23, 77 (1985).Google Scholar
  12. [12]
    S. Rang, K. Kuningas, T. Strenze, A. Orav, O. Eisen, J. Chromatogr.406, 75 (1987).CrossRefGoogle Scholar
  13. [13]
    J. Bermejo, M. D. Guillén, Anal. Chem.59, 94 (1987).CrossRefGoogle Scholar
  14. [14]
    O. Papp, GY. Szász, M. Farkas, G. Simon, I. Hermecz, J. Chromatogr.403, 19 (1987).CrossRefGoogle Scholar
  15. [15]
    R. V. Golovnya, D. N. Grigoryeva, J. High. Resolut. Chrom. & Chrom. Commun.9, 584 (1986).Google Scholar
  16. [16]
    J. Bermejo, C. G. Blanco, M. A. Diez, M. D. Guillén, Chromatographia23, 33 (1987).Google Scholar
  17. [17]
    L. Soják, J. Ruman, J. Janák, J. Chromatogr.391, 79 (1987).CrossRefGoogle Scholar
  18. [18]
    K. Héberger, Chromatographia25, 725 (1988).Google Scholar
  19. [19]
    K. Héberger, Anal. Chim. Acta223, 161 (1989).CrossRefGoogle Scholar
  20. [20]
    A. Tuabet, M. Maeck, A. Y. Badjah-Hadj-Ahmed, B. Y. Meklaty, Chromatographia25, 389 (1988).Google Scholar
  21. [21]
    L. Buydens, D. L. Massart, Anal. Chem.53, 1990 (1981).CrossRefGoogle Scholar
  22. [22]
    C. E. Döring, D. Estel, R. Fischer, J. prakt. Chem.316, 1 (1974).CrossRefGoogle Scholar
  23. [23]
    G. Dahlmann, H. J. K. Köser, H. H. Oelert, Chromatographia12, 665 (1979).Google Scholar
  24. [24]
    V. A. Gerasimenko, V. M. Nabivach, Zh. Anal. Khim.37, 110 (1982).Google Scholar
  25. [25]
    F. Vernon, J. B. Suratman, Chromatographia17, 600 (1983).CrossRefGoogle Scholar
  26. [26]
    Ye. Ye. Kugucheva, V. I. Mashinski, Zh. Anal. Khim.38, 2023 (1983).Google Scholar
  27. [27]
    T. Tóth, J. Chromatogr.279, 157 (1983).CrossRefGoogle Scholar
  28. [28]
    W. Engewald, I. Topalova, N. Petsev, Chr. Dimitrov, Chromatographia27, 561 (1987).Google Scholar
  29. [29]
    M. Frenklach, Modelling. In: Combustion Chemistry (Editor W. G. Gardiner) Springer Verlag, New York, 1984, Chapter p. pp. 423–453.Google Scholar
  30. [30](a)
    N. R. Draper, H. Smith, Applied Regression Analysis 2nd ed. John Wiley & Sons, New York, 1981; Chapter 1, pp. 1–69.Google Scholar
  31. [30](b)
    —; Chapter 3, pp. 141–192.Google Scholar
  32. [31]
    Y. Bard, Nonlinear Parameter Estimation, Academic Press, New York, 1974, Chapter 10-6, pp. 269–271.Google Scholar
  33. [32](a)
    P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill Book Company, New York, 1969; Chapter 10-2 pp. 195–203.Google Scholar
  34. [32](b)
    —; Chapter 7-2, pp. 127–133.Google Scholar
  35. [33]
    D. M. Himmelblau, Process Analysis by Statistical Methods, John Wiley & Sons, New York, 1970; Chapters 3.7 and 3.8, pp. 68–76.Google Scholar
  36. [34]
    W. G. Bardsley, Symp. Biol. Hung.30, 267 (1986).Google Scholar
  37. [35]
    P. R. Rider, In Introduction to Modern Statistical Methods, John Wiley & Sons, New York, 1939, p. 58.Google Scholar
  38. [36]
    M. Ezekiel, K. A. Fox, Methods of Correlation and Regression Analysis, Linear and Curvilinear, Third Edition, John Wiley & Sons, New York, 1959; Section II, pp. 55–150.Google Scholar
  39. [37]
    Handbook of Chemistry and Physics, (Editor:R. C. Weast) CRC Press, Cleveland, Ohio: 54th edition, 1973–1974.Google Scholar
  40. [38]
    E. Kováts in: Gas Chromatography 1968. (Editors:C.L.A. Harbourn andR. Stock) Institute of Petroleum, London, 1969, p. 73.Google Scholar
  41. [39]
    N. Dimov, P. Papazova, Chromatographia12, 720 (1979).CrossRefGoogle Scholar
  42. [40]
    N. Dimov, OV. Mekenyan, Anal. Chim. Acta212, 317 (1988).CrossRefGoogle Scholar
  43. [41]
    G. Tarján, Á. Kiss, G. Kocsis, S. Mészáros, J. M. Takács, J. Chromatogr.119, 327 (1976).CrossRefGoogle Scholar
  44. [42]
    N. P. Dimov, J. Chromatogr.360, 25 (1986).CrossRefGoogle Scholar
  45. [43]
    L. Rohrschneider, Chromatographia2, 437 (1969).CrossRefGoogle Scholar
  46. [44]
    L. S. Ettre, Chromatographia13, 73 (1980).CrossRefGoogle Scholar
  47. [45]
    R. V. Golovnya, D. N. Grigoryeva, Chromatographia17, 613 (1983).CrossRefGoogle Scholar
  48. [46]
    H. Lamparczyk, A. Radeczki, Chromatographia18, 615 (1984).CrossRefGoogle Scholar
  49. [47]
    M. V. Budahegyi, E. R. Lombosi, T. S. Lombosi, S. Y. Mészáros, Sz. Nyiredy, G. Tarján, I. Timár, J. M. Takács, J. Chromatogr.271, 213 (1983).CrossRefGoogle Scholar
  50. [48]
    K. Héberger, S. Kemény, T. Vidóczy, Int. J. Chem. Kinet.19, 171 (1987).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1990

Authors and Affiliations

  • K. Héberger
    • 1
  1. 1.Max-Planck-Institut für StrömungsforschungGöttingenFRG

Personalised recommendations