Advertisement

European Journal of Nuclear Medicine

, Volume 20, Issue 1, pp 46–52 | Cite as

Application of carbon-11 labelled nicotine in the measurement of human cerebral blood flow and other physiological parameters

  • Fuji Yokoi
  • Tasuku Komiyama
  • Takashi Ito
  • Tokishi Hayashi
  • Masaaki Iio
  • Toshihiko Hara
Original Article

Abstract

Using positron emission tomography (PET), we measured the regional cerebral blood flow (rCBF) in five normal human subjects after intravenous injection of carbon-11 labelled (R)nicotine. The rCBF of the same subjects was measured by PET using the C15O2 inhalation steady-state method. The distribution of11C activity in the brain after injection of11C-(R)nicotine was almost equivalent to the CBF image obtained with the C15O2 inhalation stead-state method. The kinetics of11C-(R)nicotine in the brain was analysed using a two-compartment model consisting of vascular and brain tissue compartments. The rCBF values obtained with11C-(R)nicotine were higher than with C15O2 gas. The relatively long fixed distribution of11C-(R)nicotine with a short uptake period allows stimulation studies by measurement of CBF to be performed with better photon flux and a longer imaging time than are possible with H215O.

Key words

Carbon-11 labelled (R)nicotine Cerebral blood flow Positron emission tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abood LG, Grassi S, Noggle HD (1985) Comparison of the binding of optically pure (−)- and (+)-[3H]nicotine to rat brain membranes. Neurochem Res 10:259–267CrossRefPubMedGoogle Scholar
  2. Appelgren LE, Hansson E, Schmiterlöw GG (1962) The accumulation and metabolism of C14-labelled nicotine in the brain of mice and cats. Acta Physiol Scand 56:249–257PubMedGoogle Scholar
  3. Bradbury MWB, Patlak CS, Oldendorf WH (1975) Analysis of brain uptake and loss of radiotracers after intracarotid injection. Am J Physiol 229:1110–1114PubMedGoogle Scholar
  4. Broussolle EP, Wong DF, Fannelli RJ, London ED (1989) In vivo specific binding of [3H]I-nicotine in the mouse brain. Life Sci 44:1123–1132CrossRefPubMedGoogle Scholar
  5. Crone C (1963) The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 58:292–305PubMedGoogle Scholar
  6. Flynn DD, Mash DC (1986) Characterization ofl-[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer's disease and the normal. J Neurochem 47:1948–1954PubMedGoogle Scholar
  7. Frackowiak RSJ, Lenzi GL, Jones T, Heater JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 4:727–736PubMedGoogle Scholar
  8. Hara T, Iio M, Inagaki K (1988) Synthesis of11C-methylated inulin as a radiopharmaceutical for imaging brain edema and pulmonary edema. Eur J Nucl Med 14:167–172PubMedGoogle Scholar
  9. Huang S-C, Mahoney DK, Phelps ME (1987) Quantification in positron emission tomography: 8. Effects of nonlinear parameter estimation on functional images. J Comput Assist Tomogr 11:314–325PubMedGoogle Scholar
  10. Jacobs P (1982) Regulation of (±)-5-bromonornicotine, synthesis of (R)- and (S)-nornicotine of high enantiometric purity. J Org Chem 47:4165–4167CrossRefGoogle Scholar
  11. Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, Inugami A, Shishido F, Uemura K (1987) A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab 7:143–153PubMedGoogle Scholar
  12. Långström B, Antoni G, Hallidin C, Svaerd H, Bergson G (1982) Synthesis of some carbon-11-labeled alkaloids. Chem Ser 20:46–48Google Scholar
  13. Nordberg A, Winblad B (1986) Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72:115–119PubMedGoogle Scholar
  14. Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, Andersson Y, Ulin J, Winblad B, Långström B (1990) Decreased uptake and binding of11C-nicotine in brains of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect 2:215–224CrossRefPubMedGoogle Scholar
  15. Nybäck H, Nordberg A, Långström B, Halliden C, Hartvig P, Åhlin A, Swan CG, Sedvall G (1989) Attempt to visualize nicotinic receptors in the brains of the monkey and man by positron emission tomography. In: Nordberg A, Fuxe K, Hoimstedt B (eds) Progress in brain research, vol 79. Elsevier, Amsterdam, pp 313–319Google Scholar
  16. Ohno K, Pettidrew KD, Rapoport SI (1979) Local cerebral blood flow in the conscious rat as measured with14C-antipyrine,14C-iodoantipyrine and3H-nicotine. Stroke 10:62–67PubMedGoogle Scholar
  17. Rapoport SI (1976) Permeability and osmotic properties of the blood-brain barrier. In: Blood-brain barrier in physiology and medicine, Raven, New York, pp 87–127Google Scholar
  18. Schmiterlöw GG, Hansson E, Andersson G, Appelgren LE, Hoffmann PC (1967) Distribution of nicotine in the central nervous system. Ann NY Acad Sci 142:2–14Google Scholar
  19. Schulz I (1980) Bicarbonate transport in the exocrine pancreas. Ann NY Acad Sci 341:191–209PubMedGoogle Scholar
  20. Suzuki R, Yamaguchi T, Kirino T, Orzi F, Klatzo I (1983) The effects of 5-minute ischema in Mongolian gerbils: I. Blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes. Acta Neuropathol (Berl) 60:207–216CrossRefGoogle Scholar
  21. Tomida S, Nowak TS, Vass K, Lohr JM, Klatzo I (1987) Experimental model for repetitive ischemic attacks in the gerbil: the cumulative effect of repeated ischemic insults. J Cereb Blood Flow Metab 7:773–782PubMedGoogle Scholar
  22. Tomida S, Wagner HG, Klatzo I, Nowak TS (1989) Effect of acute electrode placement on regional CBF in the gerbil: a comparison of blood flow measured by hydrogen clearance, [3H]nicotine, and [14C]iodoantipyrine techniques. J Cereb Blood Flow Metab 9:79–86PubMedGoogle Scholar
  23. Whitehouse PJ, Martino AM, Marcus KA, Zweig RM, Singer HS, Price DL, Kellar KJ (1988) Reductions in acetylcholine and nicotine binding in several degenerative diseases. Arch Neurol 45:722–724PubMedGoogle Scholar
  24. Zeeberg BR, Wagner Jr HN (1987) Analysis of three- and fourcompartment models for in vivo radioligand-neuroreceptor interaction. Bull Math Biol 49:469–486CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Fuji Yokoi
    • 1
  • Tasuku Komiyama
    • 2
  • Takashi Ito
    • 2
  • Tokishi Hayashi
    • 1
  • Masaaki Iio
    • 3
  • Toshihiko Hara
    • 3
  1. 1.Department of NeurologyNational Center of Neurology and PsychiatryKodaira City, TokyoJapan
  2. 2.Nippon Medical SchoolChiyoda-ku, TokyoJapan
  3. 3.National Nakano Chest HospitalNakano-ku, TokyoJapan

Personalised recommendations