Chromatographia

, Volume 29, Issue 11–12, pp 551–556 | Cite as

Effect of the polar functional group of the solute on hydrophobic interaction with the stationary ligand in reversed-phase high-performance liquid chromatography

  • A. Kaibara
  • M. Hirose
  • T. Nakagawa
Originals

Summary

The effects of the polar functional group of a solute on the r-value (the slope of the log-log plots of capacity factor vs. reciprocal of the organic solvent concentration in an aqueous binary mobile phase) and on the 1-octanol/water partition coefficient are compared, based on the linear solution energy relationship concept. Though both effects are closely related to the solute-solvent interaction, the effect on the partition coefficient depends on the difference in the abilities of the organic solvent and water to interact with the solute, while the effect on the r-value depends on the ability of the solute to interact with the solvent (especially water). The mobile phase composition, as far as it is in the intermediate range, causes little change in the effect of the polar functional group on the hydrophobic retention of the solute. Consequently, the r-value was confirmed to represent the hydrophobic interaction between the solute and ligand.

Key Words

Column liquid chromatography Linear solvation energy relationship (LSER) Hydrophobic adsorption Octanol/water partition coefficient Solute-solvent interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Horváth, W. Melander, I. Molnár, J. Chromatogr.125, 129 (1976).Google Scholar
  2. [2]
    B. L. Karger, J. R. Gant, A. Hartkopf, P. H. Weiner, J. Chromatogr.128, 65 (1976).Google Scholar
  3. [3]
    A. Kaibara, C. Hohda, N. Hirata, M. Hirose, T. Nakagawa, Chromatographia,29, 275 (1990).Google Scholar
  4. [4]
    A. Kaibara, C. Hohda, N. Hirata, T. Nakagawa, J. Chromatogr. Sci.27, 716 (1989).Google Scholar
  5. [5]
    A. Kaibara, M. Hirose, T. Nakagawa, Chromatographia, accepted.Google Scholar
  6. [6]
    M. J. Kamlet, R. M. Doherty, M. H. Abraham, Y. Marcus, R. W. Taft, J. Phys. Chem.92, 5244 (1988).Google Scholar
  7. [7]
    M. J. Kamlet, J. M. Abboud, M. H. Abraham, R. M. Taft, J. Org. Chem.48, 2877 (1983).Google Scholar
  8. [8]
    M. J. Kamlet, M. H. Abraham, P. W. Carr, R. M. Doherty, R. W. Taft, J. Chem. Soc. Perkin Trans. II 2087 (1988).Google Scholar
  9. [9]
    R. F. Rekker, “The Hydrophobic Fragmental Constant”, Elsevier, Amsterdam (1977).Google Scholar
  10. [10]
    K. A. Dill, J. Phys. Chem.91, 1980 (1987).Google Scholar
  11. [11]
    S. C. Rutan, P. W. Carr, W. J. Cheong, J. H. Park, L. R. Snyder, J. Chromatogr.463, 21 (1989).Google Scholar
  12. [12]
    K. E. Bij, C. Horváth, W. R. Melander, A. Nahum, J. Chromatogr.203, 65 (1981).Google Scholar
  13. [13]
    N. El Tayar, A. Tsantili-Kakoulidou, T. Roethlisberger, B. Testa, J. Gal, J. Chromatogr.439, 237 (1988).Google Scholar
  14. [14]
    J. H. Park, P. W. Carr, J. Chromatogr.465, 123 (1989).Google Scholar
  15. [15]
    T. Braumann, J. Chromatogr.373, 191 (1986).Google Scholar
  16. [16]
    D. J. Minick, J. J. Sabatka, D. A. Brent, J. Liq. Chromatogr.10, 2565 (1987).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1990

Authors and Affiliations

  • A. Kaibara
    • 1
  • M. Hirose
    • 1
  • T. Nakagawa
    • 1
  1. 1.Faculty of Pharmaceutical SciencesKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations