Journal of Radioanalytical and Nuclear Chemistry

, Volume 119, Issue 6, pp 477–487 | Cite as

Trace determination of beryllium by heavy ion activation analysis

  • M. Colin
  • C. Friedli
  • P. Lerch


A novel procedure for measuring the concentration of trace beryllium in different samples has been studied using11B heavy ion activation analysis. The specific reaction,9Be/11B, 2n/18F, is sensitive and selective when using a 10 MeV11Be3+ bombardment energy. The detection limit for a nondestructive analysis is 0.1 ng for a 2 h irradiation in a μA cm−2 beam current. A precision of 12% was achieved at the 50 μg g−1 level. Beryllium has been determined in a standard beryllium-copper alloy NBS-SRM C1123. Glass samples containing up to 61 trace elements were also analyzed nondestructively. When using a clean vacuum irradiation chamber, the technique might allow ultra-trace determinations, dealing with solid samples of a few milligrams.


Physical Chemistry Inorganic Chemistry Detection Limit Beryllium Beam Current 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Murail,Metallurgie, 17/1977/93.Google Scholar
  2. 2.
    K. Masu, S. Nakatsuka, M. Kongai, K. J. Takahashi,J. Electrochem. Soc., 129/1982/1623.Google Scholar
  3. 3.
    D. A. Everest, in Comprehensive Inorganic Chemistry, J. C. Bailar et al., ed. Pergamon Press, Oxford, 1973, p. 540.Google Scholar
  4. 4.
    P. Schramel, X. Li-Qiang,Anal. Chem., 54/1982/1333.Google Scholar
  5. 5.
    A. R. Date, A. L. Gray,Spectrochim. Acta, 40B/1985/115.Google Scholar
  6. 6.
    K. Matsusaki, T. Yoshino,Anal. Chim. Acta, 157 /1984/193.Google Scholar
  7. 7.
    A. G. Page, S. V. Godbole, K. H. Madraswala, M. J. Kulkarni, V. S. Mallapurka, B. D. Joshi,Spectrochim. Acta, 39B/1984/551.Google Scholar
  8. 8.
    J. A. Maillard, R. H. Dalling, L. J. Radziemski,Appl. Spectroscopy, 40/1986/491.Google Scholar
  9. 9.
    Ch. Engelmann,J. Radioanal. Chem., 7/1971/89.Google Scholar
  10. 10.
    H. A. Das, F. A. Hartog, F. A. De Witte,J. Radioanal. Chem., 14/1973/375.Google Scholar
  11. 11.
    B. D. Lass, N. G. Roche, A. O. Sanni, E. A. Schweikert, J. F. Ojo,J. Radioanal. Chem., 70/1982/251.Google Scholar
  12. 12.
    C. Friedli, Th. Diaco, P. Lerch,J. Radioanal. Nucl. Chem., /1987/ /in press/.Google Scholar
  13. 13.
    M. Rousseau, C. Friedli, P. Lerch,Anal. Chem., 56/1984/2854.Google Scholar
  14. 14.
    K. Ishii, M. Valladon, C. C. Sastri, J. L. Debrun,Nucl. Instr. Meth., 153/1978/503.Google Scholar
  15. 15.
    J. F. Ziegler, in Handbook of Stopping Cross-Sections for Energenetic Ions in all Elements, Vol. 5, Pergamon Press, New-York, 1980.Google Scholar
  16. 16.
    L. A. Currie,Anal. Chem., 40/1968/586.Google Scholar
  17. 17.
    B. D. Lass, C. Friedli, E. A. Schweikert,J. Radioanal. Chem., 57/1980/481.Google Scholar
  18. 18.
    G. Erdtmann, W. Soyka, in The Gamma Rays of the Radionuclides, Verlag Chemie, Weinheim, 1979.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • M. Colin
    • 1
  • C. Friedli
    • 1
  • P. Lerch
    • 1
  1. 1.Institut d'Electrochimie et de RadiochimieSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations