Journal of Radioanalytical and Nuclear Chemistry

, Volume 119, Issue 6, pp 477–487 | Cite as

Trace determination of beryllium by heavy ion activation analysis

  • M. Colin
  • C. Friedli
  • P. Lerch


A novel procedure for measuring the concentration of trace beryllium in different samples has been studied using11B heavy ion activation analysis. The specific reaction,9Be/11B, 2n/18F, is sensitive and selective when using a 10 MeV11Be3+ bombardment energy. The detection limit for a nondestructive analysis is 0.1 ng for a 2 h irradiation in a μA cm−2 beam current. A precision of 12% was achieved at the 50 μg g−1 level. Beryllium has been determined in a standard beryllium-copper alloy NBS-SRM C1123. Glass samples containing up to 61 trace elements were also analyzed nondestructively. When using a clean vacuum irradiation chamber, the technique might allow ultra-trace determinations, dealing with solid samples of a few milligrams.


Physical Chemistry Inorganic Chemistry Detection Limit Beryllium Beam Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Murail,Metallurgie, 17/1977/93.Google Scholar
  2. 2.
    K. Masu, S. Nakatsuka, M. Kongai, K. J. Takahashi,J. Electrochem. Soc., 129/1982/1623.Google Scholar
  3. 3.
    D. A. Everest, in Comprehensive Inorganic Chemistry, J. C. Bailar et al., ed. Pergamon Press, Oxford, 1973, p. 540.Google Scholar
  4. 4.
    P. Schramel, X. Li-Qiang,Anal. Chem., 54/1982/1333.Google Scholar
  5. 5.
    A. R. Date, A. L. Gray,Spectrochim. Acta, 40B/1985/115.Google Scholar
  6. 6.
    K. Matsusaki, T. Yoshino,Anal. Chim. Acta, 157 /1984/193.Google Scholar
  7. 7.
    A. G. Page, S. V. Godbole, K. H. Madraswala, M. J. Kulkarni, V. S. Mallapurka, B. D. Joshi,Spectrochim. Acta, 39B/1984/551.Google Scholar
  8. 8.
    J. A. Maillard, R. H. Dalling, L. J. Radziemski,Appl. Spectroscopy, 40/1986/491.Google Scholar
  9. 9.
    Ch. Engelmann,J. Radioanal. Chem., 7/1971/89.Google Scholar
  10. 10.
    H. A. Das, F. A. Hartog, F. A. De Witte,J. Radioanal. Chem., 14/1973/375.Google Scholar
  11. 11.
    B. D. Lass, N. G. Roche, A. O. Sanni, E. A. Schweikert, J. F. Ojo,J. Radioanal. Chem., 70/1982/251.Google Scholar
  12. 12.
    C. Friedli, Th. Diaco, P. Lerch,J. Radioanal. Nucl. Chem., /1987/ /in press/.Google Scholar
  13. 13.
    M. Rousseau, C. Friedli, P. Lerch,Anal. Chem., 56/1984/2854.Google Scholar
  14. 14.
    K. Ishii, M. Valladon, C. C. Sastri, J. L. Debrun,Nucl. Instr. Meth., 153/1978/503.Google Scholar
  15. 15.
    J. F. Ziegler, in Handbook of Stopping Cross-Sections for Energenetic Ions in all Elements, Vol. 5, Pergamon Press, New-York, 1980.Google Scholar
  16. 16.
    L. A. Currie,Anal. Chem., 40/1968/586.Google Scholar
  17. 17.
    B. D. Lass, C. Friedli, E. A. Schweikert,J. Radioanal. Chem., 57/1980/481.Google Scholar
  18. 18.
    G. Erdtmann, W. Soyka, in The Gamma Rays of the Radionuclides, Verlag Chemie, Weinheim, 1979.Google Scholar

Copyright information

© Akadémiai Kiadó 1987

Authors and Affiliations

  • M. Colin
    • 1
  • C. Friedli
    • 1
  • P. Lerch
    • 1
  1. 1.Institut d'Electrochimie et de RadiochimieSwiss Federal Institute of TechnologyLausanneSwitzerland

Personalised recommendations