Skip to main content

Advertisement

Log in

Concentration gradients for monoamine metabolites in lumbar cerebrospinal fluid

  • Full Papers
  • Published:
Journal of Neural Transmission - Parkinson's Disease and Dementia Section

Summary

Concentration gradients in lumbar cerebrospinal fluid (CSF) for the monoamine metabolites homovanillic acid (HVA), 5-hydroxy-indoleacetic acid (5-HIAA) and 4-hydroxy-3-methoxyphenylglycol (HMPG) were studied in 9 healthy controls and 47 neuropsychiatric patients without diseases causing disturbed CSF circulation. In a serial sampling of the first 24 ml of CSF, steep concentration gradients between the first (0–4 th ml) and last (21th–24th ml) portions of CSF were found for HVA (99±59% increase; p<0.001) and 5-HIAA (88±54% increase; p<0.001), while the concentration gradient was slight for HMPG (11±7% increase; p<0.001). The existence of marked concentration gradients for the monoamine metabolites HVA and 5-HIAA gives further evidence for an active transport system for these metabolites and indicates that the lumbar CSF-HVA and 5-HIAA levels reflect the dopamine and serotonin metabolism in the brain. Moreover, the existence of pronounced concentration gradients for HVA and 5-HIAA levels reflect the dopamine and serotonin metabolism in the brain. Moreover, the existence of pronounced concentration gradients for HVA and 5-HIAA stresses the importance of making analyses on a standardized volume of CSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adèr JP, Aizenstein ML, Postema F, Korf J (1979) Origin of free 3-methoxy-4-hydroxyphenylethyleneglycol in rat cerebrospinal fluid. J Neural Transm 46: 279–290

    Article  PubMed  Google Scholar 

  • Andersen O, Johansson B, Svennerholm L (1981) Monoamine metabolites in successive samples of spinal fluid. Acta Neurol Scand 63: 247–254

    PubMed  Google Scholar 

  • Aschcroft GW, Dow RC, Moir ATB (1968) The active transport of 5-hydroxyindol-3-ylacetic acid and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanaesthetized dog. J Physiol 199: 397–425

    PubMed  Google Scholar 

  • Bartholini G, Pletscher A, Tissot R (1966) On the origin of homovanillic acid in the cerebrospinal fluid. Experientia 22: 609–610

    Article  PubMed  Google Scholar 

  • Bertilsson L, Åsberg, M, Lantto O, Scalia-Tomba GP, Träskman-Bendz L, Tybring G (1982) Gradients of monoamine metabolites and cortisol in cerebrospinal fluid of psychiatric patients and healthy controls. Psychiatry Res 6: 77–83

    Article  PubMed  Google Scholar 

  • Blennow K, Wallin A, Gottfries CG, Karlsson I, Månsson JE, Skoog I, Svennerholm L, Wikkelsö C (1991a) Cerebrospinal fluid monoamine metabolites in 114 healthy individuals 18–88 years of age (submitted)

  • Blennow K, Wallin A, Gottfries CG, Lekman A, Karlsson I, Svennerholm L (1991b) Significance of reduced lumbar CSF levels of HVA and 5-HIAA in Alzheimer's disease et al. Neurobiol Aging 13: 107–113

    Article  Google Scholar 

  • Blennow K, Rybo E, Wallin A, Gottfries CG, Svennerholm L (1991c) Cerebrospinal fluid cytology in Alzheimer's disease. Dementia 2: 25–29

    Google Scholar 

  • Blennow K, Fredman P, Wallin A, Gottfries CG, Långström G, Svennerholm L (1992) Protein analyses in cerebrospinal fluid. I. Influence of concentration gradients for proteins on CSF/S albumin ratio. Eur Neurol (in press)

  • Cutler N, Kay A, Ågren H, Linnoila M, Potter W (1988) Cerebrospinal fluid monoamine metabolites levels in 32 healthy men aged 19–77 years. Brain Dysfunct 1: 192–196

    Google Scholar 

  • Degrell I, Nagy E (1990) Concentration gradients for HVA, 5-HIAA, ascorbic acid, and uric acid in cerebrospinal fluid. Biol Psychiatry 27: 891–896

    Article  PubMed  Google Scholar 

  • DiChiro G (1964) Movement of the cerebrospinal fluid in human beings Nature 204: 290–291

    PubMed  Google Scholar 

  • Ebert M, Kartzinel R, Cowdry R, Goodwin F (1980) Cerebrospinal fluid amine metabolites and the probenicide test. In: Wood JH (ed) Neurobiology of cerebrospinal fluid. Plenum Press, New York, pp 97–112

    Google Scholar 

  • Eccleston D, Ashcroft GW, Moir ATB, Parker-Rhodes A, Lutz W, O'Mahoney DP (1968) A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid. J Neurochem 15: 947–957

    PubMed  Google Scholar 

  • Garelis E, Sourkes TL (1973) Sites of origin in the central nervous system of monoamine metabolites measured in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry 36: 625–629

    PubMed  Google Scholar 

  • Gateless D, Stanley M, Träskman-Bendz L, Gilroy J (1984) The influence of the lying and sitting positions on the gradients of 5-HIAA and HVA in lumbar cerebrospinal fluid. Biol Psychiatry 19: 1585–1589

    PubMed  Google Scholar 

  • Gjerris A, Werdelin L, Gjerris F, Sörensen PS, Rafaelsen OJ, Alling C (1987) CSF-amine metabolites in depression, dementia and in controls. Acta Psychiatr Scand 75: 619–628

    PubMed  Google Scholar 

  • Gordon E, Perlow M, Oliver J, Ebert M, Kopin I (1975) Origins of catecholamine metabolites in monkey cerebrospinal fluid. J Neurochem 25: 347–349

    PubMed  Google Scholar 

  • Gottfries CG, Gottfries I, Johansson V, et al (1971) Acid monoamine metabolites in human cerebrospinal fluid and their relations to age and sex. Neuropharmacology 10: 665–672

    Article  PubMed  Google Scholar 

  • Jakupcevic M, Lackovic Z, Stefoski D, Bulat M (1977) Nonhomogeneous distribution of 5-hydroxyindoleacetic acid and homovanillic acid in the lumbar cerebrospinal fluid of man. J Neurol Sci 31: 165–171

    Article  PubMed  Google Scholar 

  • Johansson B, Roos BE (1975) Concentrations of monoamine metabolites in human lumbar and cisternal cerebrospinal fluid. Acta Neurol Scand 52: 137–144

    PubMed  Google Scholar 

  • Kopin IJ, Gordon EK, Jimerson DC, Polinsky RJ (1983) Relation between plasma and cerebrospinal fluid levels of 3-methoxy-4-hydroxyphenylglycol. Science 219: 73–75

    Google Scholar 

  • Post RM, Goodwin EK, Gordon E (1973) Amine metabolism in human cerebro spinal fluid: effects of cord transection and spinal fluid block. Science 179: 879–899

    Google Scholar 

  • Scheinin M (1985) Monoamine metabolites in human cerebrospinal fluid: indicators of neuronal activity? Med Biol 63: 1–17

    PubMed  Google Scholar 

  • Siever L, Kraemer H, Sack R, Angwin P, Berger P, Zarcone V, Barchas J, Brodie KH (1975) Gradients of biogenic amine metabolites in cerebrospinal fluid. Dis Nerv Syst 36: 13–16

    PubMed  Google Scholar 

  • Sjöquist B, Lindström B, Änggård E (1975) Mass fragmentographic determination of 4-hydroxy-3-methoxyphenylglycol (HMPG) in urine, cerebrospinal fluid, plasma and tissue using a deuterium-labelled internal standard. J Chromatogr, 105: 309–316

    Article  PubMed  Google Scholar 

  • Sjöström R, Ekstedt J, Änggård E (1975) Concentration gradients of monoamine metabolites in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry 38: 666–668

    PubMed  Google Scholar 

  • Sourkes TL (1973) On the origin of homovanillic acid (HVA) in the cerebrospinal fluid. J Neural Transm 34: 153–157

    Article  PubMed  Google Scholar 

  • Stanley M, Träskman-Bendz L, Dorovini K (1985) Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Sci 37: 1279–1286

    Article  PubMed  Google Scholar 

  • Swahn C-G, Sandgärde B, Wiesel F-A, Sedvall G (1976) Simultaneous deter-mination of the three major monoamine metabolites in brain tissue and body fluids by a mass fragmentographic method. Psychopharmacology 48: 147–152

    Google Scholar 

  • Van der Poel FW, van Praag HM, Korf J (1977) Evidence for a probenecid-sensitive transport system of acid monoamine metabolites from the spinal subarachnoid space. Psychopharmacology 52: 35–40

    Article  PubMed  Google Scholar 

  • Weir RL, Chase TN, Ng LKY, Kopin IJ (1973) 5-hydroxyindoleacetic acid in spinal fluid: relative contribution from brain and spinal cord. Brain Res 52: 409–412

    Article  PubMed  Google Scholar 

  • Wode-Helgodt B, Sedvall G (1978) Correlations between height of subject and concentrations of monoamine metabolites in the cerebrospinal fluid from psychotic men and women. Commun Psychopharmacol 2: 177–183

    PubMed  Google Scholar 

  • Wood JH (1980) Sites of origin and cerebrospinal fluid concentration gradients: neurotransmitters, their precursors and metabolites, and cyclic nucleotides. In: Wood JH (ed) Neurobiology of cerebrospinal fluid. Plenum Press, New York, pp 53–62

    Google Scholar 

  • Ziegler MG, Wood JH, Lake CR, Kopin IJ (1977) Norepinephrine and 3-methoxy-4-hydroxyphenyl glycol gradients in human cerebrospinal fluid. Am J Psychiatry 134: 565–568

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blennow, K., Wallin, A., Gottfries, C.G. et al. Concentration gradients for monoamine metabolites in lumbar cerebrospinal fluid. J Neural Transm Gen Sect 5, 5–15 (1993). https://doi.org/10.1007/BF02260910

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02260910

Keywords

Navigation