Journal of Medical Systems

, Volume 20, Issue 1, pp 11–17 | Cite as

Order determination in autoregressive modeling of diastolic heart sounds

  • Inan Güler
  • M. Kemal Kiymik
  • Nihal Fatma Güler
Articles

Abstract

Previous studies demonstrated that spectral analysis of diastolic heart sounds may provide valuable information for the detection of coronary artery disease. Although parametric modeling methods were successfully used to achieve this goal, and showed considerable performance, the accuracy and precision of the analysis is strongly dependent on the model order selected. In order to investigate the effects of model order selection on the analysis, diastolic heart sounds recorded from both normal and diseased patients were analyzed using the AR modeling, which is computationally the most efficient parametric spectral analysis method. The model orders were determined by using four different model order selection criteria. The results showed that the four criteria yielded different orders for the same data set. On the other hand, different criteria showed different performance in different measurement conditions. Effect of arbitrary order selection was also discussed. As a result, an optimal AR model order that may be used for every case was determined.

Key Words

diastolic heart sounds coronary artery disease model order selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dock, W., and Zonaraich, S., A diastolic murmur arising in a stenosed coronary artery,Amer. Med. 42:617, 1967.CrossRefGoogle Scholar
  2. 2.
    Cheng, T. O., Diagnostic murmur caused by coronary artery stenosis,Ann. Intern. Med. 72:543–546, 1970.Google Scholar
  3. 3.
    Sangster, J. F., Diagnostic murmur of coronary artery stenosis.Brit. Heart J. 35:840–844, 1973.Google Scholar
  4. 4.
    Khalifa, A. M. A., and Giddens, D. P., Characterization of post-stenotic flow disturbances.J. Biomech. 14:275–296, 1981.CrossRefGoogle Scholar
  5. 5.
    Kurtz, K. J., Dynamic vascular ausculation.Amer. J. Med. 76:1066–1074, 1984.CrossRefGoogle Scholar
  6. 6.
    Lees, R. S. and Myers, G. S., Noninvasive diagnosis of arterial disease.Adv. Intern. 23:475–509, 1983.Google Scholar
  7. 7.
    Semmlow, J. L., Welkowitz, W., Kostis, J. B., and Mackenzie, J. W., Coronary artery disease-correlates between diastolic auditory characteristics and coronary artery stenoses.IEEE Trans. Biomed. Eng. 30:136–139, 1983.Google Scholar
  8. 8.
    Akay M., Bauer, M., Semmlow, J. L., Welkowitz, W., and Kostis, J. B., AR modeling of diastolic heart sounds.Proc. IEEE Front. Med. New Orleans, LA, 172–175, 1988.Google Scholar
  9. 9.
    Akay M., Semmlow, J. L., Welkowitz, W., and Kostis, J. B., Parametric analysis of diastolic heart sounds before and after angioplasty.Proc. IEEE Front. Med. Seattle, WA, 51–53, 1989.Google Scholar
  10. 10.
    Akay, M., Semmlow, S. L., Welkowitz, W., Bauer, M. D., and Kostis, J. B., Detection of coronary occlusions using autoregressive modeling of diastolic heart sounds.IEEE Trans. Biomed. Eng. 37: 366–373, 1990.CrossRefGoogle Scholar
  11. 11.
    Semmlow, J. L., Akay, M., and Welkowitz, W., Noninvasive detection of CAD using parametric analysis methods.IEEE Eng. Med. Biol. 9:33–37, 1990.CrossRefGoogle Scholar
  12. 12.
    Akay, M., Welkowitz, W., Semmlow, J. L., and Kostis, J., Application of ARMA method to acoustic detection of coronary artery disease.Med. Biol. Eng. Comp. 29:365–372, 1991.Google Scholar
  13. 13.
    Kay, S. M., and Marple, S. L., Spectral analysis: a modern perspective.Proc. IEEE 69:1380–1419, 1981.Google Scholar
  14. 14.
    Paiss, O., and Inbar, G. F., Autoregressive modeling of surface EMG and its spectrum with application to fatigueIEEE Trans. Biomed. Eng. 34:761–771, 1987.Google Scholar
  15. 15.
    Iyer, V. K., Ramamoorthy, P. A., and Ploysongsang, Y., Autoregressive modeling of lung sounds: characterization of source and transmission.IEEE Trans. Biomed. Eng. 36:1133–1136, 1989.CrossRefGoogle Scholar
  16. 16.
    Ansourian, M. N., Dripps, J. H., Beattie, G. J., and Boddy, K., Autoregressive spectral estimation of fetal breathing movement.IEEE Trans. Biomed. Eng. 36:1076–1084, 1989.CrossRefGoogle Scholar
  17. 17.
    Güler, I., Kiymik, M. K., Kara, S., and Yüksel, M. E., Application of autoregressive analysis to 20 MHz pulsed Doppler data in real time.Int. J. Biomed. Comp. 31:247–256, 1992.CrossRefGoogle Scholar
  18. 18.
    Güler, N. F., Kiymik, M. K., and Güler, I., Comparison of FFT-and AR-based sonogram outputs of 20 MHz pulsed Doppler data in real time.Comp. Biol. Med. 25:383–391, 1995.CrossRefGoogle Scholar
  19. 19.
    Güler, N. F., Kiymik, M. K., and Güler, I., Autoregressive-based sonogram outputs of 20 MHz pulsed Doppler data.Med. Progress Tech. 21:105–110, 1995.Google Scholar
  20. 20.
    Akaike, H., A new look at the statistical model identification.IEEE Trans. Auto. Cont. 19:716–723, 1974.CrossRefGoogle Scholar
  21. 21.
    Ulrich, T. J., and Bishop, T. N., Maximum entropy spectral analysis and autoregressive decomposition.Rev. Geophys. Space Phys. 13:183–200, 1975.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Inan Güler
    • 1
  • M. Kemal Kiymik
    • 1
  • Nihal Fatma Güler
    • 1
  1. 1.Biomedical Engineering Group, Institute of Science and TechnologyKahramanmaras Sutcu Imam UniversityKahramanmara§Turkey

Personalised recommendations