Computing

, Volume 15, Issue 4, pp 347–355

# Quadrature formulas for cauchy principal value integrals

• M. M. Chawla
• N. Jayarajan
Article

## Abstract

Quadrature formulas of the Clenshaw-Curtis type, based on the “practical” abscissasxk=cos(kπ/n),k=0(1)n, are obtained for the numerical evaluation of Cauchy principal value integrals$$\int\limits_{ - 1}^1 {(x - a)^{ - 1} } f(x) dx, - 1< a< 1$$.

## Keywords

Computational Mathematic Numerical Evaluation Quadrature Formula
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Zusammenfassung

Die Quadraturformeln vom Clenshaw-Curtis Typ, die auf den “praktischen” Abszissenxk=cos(kπ/n),k=0(1)n, basieren, werden für die numerische Berechnung des Cauchyschen Hauptwerts$$\int\limits_{ - 1}^1 {(x - a)^{ - 1} } f(x) dx, - 1< a< 1$$, abgeleitet.

## References

1. [1]
Lanczos, C.: Introduction to: Tables of Chebyshev Polynomials. (Applied Math. Series, Vol. 9.) Washington: National Bureau of Standards 1952.Google Scholar
2. [2]
Clenshaw, C. W., Curtis, A. R.: A method for Numerical Integration on an Automatic Computer. Numer. Math.2, 197–205 (1960).Google Scholar
3. [3]
Paget, D. F., Elliott, D.: An Algorithm for the Numerical Evaluation of Certain Cauchy Principal Value Integrals. Numer. Math.19, 373–385 (1972).Google Scholar
4. [4]
Davis, P. J.: Interpolation and Approximation. New York: Blaisdell 1963.Google Scholar
5. [5]
Riess, R. D., Johnson, L. W.: Error Estimates for Clenshaw-Curtis Quadrature. Numer. Math.18, 345–353 (1972).Google Scholar
6. [6]
Chawla, M. M.: Error Estimates for the Clenshaw-Curtis Quadrature. Math. Comp.22, 651–656 (1968).Google Scholar