Computing

, Volume 15, Issue 4, pp 347–355

# Quadrature formulas for cauchy principal value integrals

• M. M. Chawla
• N. Jayarajan
Article

## Abstract

Quadrature formulas of the Clenshaw-Curtis type, based on the “practical” abscissasxk=cos(kπ/n),k=0(1)n, are obtained for the numerical evaluation of Cauchy principal value integrals$$\int\limits_{ - 1}^1 {(x - a)^{ - 1} } f(x) dx, - 1< a< 1$$.

### Keywords

Computational Mathematic Numerical Evaluation Quadrature Formula

# Quadraturformeln für Cauchysche Hauptwertintegrale

## Zusammenfassung

Die Quadraturformeln vom Clenshaw-Curtis Typ, die auf den “praktischen” Abszissenxk=cos(kπ/n),k=0(1)n, basieren, werden für die numerische Berechnung des Cauchyschen Hauptwerts$$\int\limits_{ - 1}^1 {(x - a)^{ - 1} } f(x) dx, - 1< a< 1$$, abgeleitet.

## Preview

Unable to display preview. Download preview PDF.

### References

1. [1]
Lanczos, C.: Introduction to: Tables of Chebyshev Polynomials. (Applied Math. Series, Vol. 9.) Washington: National Bureau of Standards 1952.Google Scholar
2. [2]
Clenshaw, C. W., Curtis, A. R.: A method for Numerical Integration on an Automatic Computer. Numer. Math.2, 197–205 (1960).Google Scholar
3. [3]
Paget, D. F., Elliott, D.: An Algorithm for the Numerical Evaluation of Certain Cauchy Principal Value Integrals. Numer. Math.19, 373–385 (1972).Google Scholar
4. [4]
Davis, P. J.: Interpolation and Approximation. New York: Blaisdell 1963.Google Scholar
5. [5]
Riess, R. D., Johnson, L. W.: Error Estimates for Clenshaw-Curtis Quadrature. Numer. Math.18, 345–353 (1972).Google Scholar
6. [6]
Chawla, M. M.: Error Estimates for the Clenshaw-Curtis Quadrature. Math. Comp.22, 651–656 (1968).Google Scholar