Advertisement

The Journal of Membrane Biology

, Volume 131, Issue 3, pp 151–160 | Cite as

Activities of a Mechanosensitive Ion Channel in anE. Coli Mutant Lacking the Major Lipoprotein

  • Andrzej Kubalski
  • Boris Martinact
  • Kit-Yin Ling
  • Julius Adler
  • Ching Kung
Article

Summary

The activity of the mechanosensitive (MS) ion channels in membrane patches, excised fromE. coli spheroplasts, was analyzed using the patch-clamp technique. Outer membranes from a mutant lacking the major lipoprotein (Lpp) and its wildtype parent were examined. The MS-channel activities in the wild-type membrane rarely revealed substates at the time resolution used. These channels showed a stretch sensitivity indicated by the IISP (the suction for ane-fold increase in channel open probability) of 4.9 mm Hg suction. The MS-channel activities oflpp included a prominent substate and showed a weaker mechano-sensitivity with an 1/S p of 10.0 mm Hg. Whereas small amphipaths (chlorpromazine, trinitrophenol) or a larger amphipath (lysolecithin) all activated the MS channel in the wild-type membrane under minimal suction, only the larger lysolecithin could activate the MS channel in thelpp membranes. After lysolecithin addition, thelpp membrane became more effective in transmitting the stretch force to the MS channel, as indicated by a steepening of the Boltzmann curve. We discuss one interpretation of these results, in which the major lipoprotein serves as a natural amphipath inserted in the inner monolayer and the loss of this natural amphipath makes the bilayer less able to transmit the gating force.

Key Words

mechanosensitive channel outer membrane Escherichia coli/kw] lipoprotein membrane protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berrier, C., Coulombe, A., Houssin, C. Ghazi, A. 1989. A patchclamp study of inner and outer membranes and of contact zones ofE. Coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane.FEBS Lett. 259:27–32CrossRefPubMedGoogle Scholar
  2. Braun, V. 1975. Covalent lipoprotein from the outer membrane ofEscherichia coli.Biochim. Biophys. Acta 415:335–377PubMedGoogle Scholar
  3. Brehm, P., Kullberg, K., Moody-Corbett, F. 1984. Properties of nonjunctional acetylcholine receptor channels on innervated muscle ofXenopus laevis.J. Physiol. 350:631–648PubMedGoogle Scholar
  4. Buechner, M. 1990. Mechanosensitive ion channels and outer membrane permeability ofEscherichia coli. Ph.D. dissertation, pp. 115–117. University of Wisconsin-MadisonGoogle Scholar
  5. Buechner, M., Delcour, A.H., Martinac, B., Adler, J. Kung, C. 1990. Ion channel activities in theEscherichia coli outer membrane.Biochim. Biophys. Acta 1024:111–121PubMedGoogle Scholar
  6. Delcour, A.H., Martinac, B., Adler, J., Kung, C. 1989. Modified reconstitution method used in patch-clamp studies ofEscherichia coli ion channels.Biophys. J. 56:631–636PubMedGoogle Scholar
  7. Franco, A., Lansman, J.B. 1990. Calcium entry through stretchinactivated ion channels inmdx myotubes.Nature 344:670–673Google Scholar
  8. Guharay, F., Sachs, F. 1984. Stretch-activated single ion channel in tissue-cultured embryonic chick skeletal muscle.J. Physiol. 352:685–701PubMedGoogle Scholar
  9. Gustin, M.C., Zhou, X.-L., Martinac, B., Kung, C. 1988. A mechanosensitive ion channel in the yeast plasma membrane.Science 242:762–765Google Scholar
  10. Hirota, T., Suzuki, H., Nishimura, Y., Yasuda, S. 1977. On the process of cellular division inEscherichia coli: A mutant ofE. Coli lacking a murein-lipoprotein.Proc. Natl. Acad. Sci. USA 74:1417–1420PubMedGoogle Scholar
  11. Kubalski, A., Martinac, B., Adler, J., Kung, C. 1991. Altered properties of the mechanosensitive ion channel in a lipoprotein mutant ofEscherichia coli.Biophys. J. 59:455a Google Scholar
  12. Kullberg, R. 1987. Stretch-activated ion channels in bacteria and animal cell membranes.Trends Neurosci. 10:387–388CrossRefGoogle Scholar
  13. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685CrossRefPubMedGoogle Scholar
  14. Long, W. S., Slayman, C. L., Low, K. B. 1978. Production of giant cells ofEscherichia coli.J. Bacteriol. 133:995–1007PubMedGoogle Scholar
  15. Lugtenberg, B., van Alphen, L. 1983. Molecular architecture and functioning of the outer membrane ofEscherichia coli and other gram-negative bacteria.Biochim. Biophys. Acta 737:51–115PubMedGoogle Scholar
  16. Markin, V.S., Martinac, B. 1991. Mechanosensitive ion channels as reporters of bilayer expansion: A theoretical model. Biophys. J.60:1120–1127PubMedGoogle Scholar
  17. Martinac, B. 1992. Mechanosensitive ion channels: biophysics and physiology.In: Thermodynamics of Membrane Receptors and Channels, M.B. Jackson editor. pp. 327–352. CRC Press, Boca Raton, FLGoogle Scholar
  18. Martinac, B. Buechner, M., Delcour, A.H., Adler, J., Kung, C. 1987. Pressure-sensitive ion channel inEscherichia coli.Proc. Natl. Acad. Sci. USA 84:2297–2301PubMedGoogle Scholar
  19. Martinac, B., Adler, J., Kung, C. 1990. Mechanosensitive ion channels ofE. Coli activated by amphipaths.Nature 348:261–263Google Scholar
  20. Martinac, B., Delcour, A.H., Buechner, M., Adler, J., Kung, C. 1992. Mechanosensitive ion channels in bacteria.In: Comparative Aspects of Mechanoreceptor Systems, F. Ito editor. pp. 3–18. Springer-Verlag, BerlinGoogle Scholar
  21. Mizushima, S. 1985. Structure, assembly, and biogenesis of the outer membrane.In: Molecular Cytology ofEscherichia coli N. Nanninga editor. pp. 39–75. Academic, LondonGoogle Scholar
  22. Morris, C.E. 1990. Mechanosensitive ion channels.J. Membrane Biol. 113:93–107CrossRefGoogle Scholar
  23. Nakae, T. 1986. Outer membrane permeability of bacteria.CRC Crit. Rev. Microbial. 13:1–62Google Scholar
  24. Opsahl, L.R., Mak, D.D., Webb, W.W. 1990. Stretch sensitivity of alamethicin channels.Biophys. J. 57:321a Google Scholar
  25. Osborn, MT, Gander, J.E., Parisi, E., Carson, J. 1972. Mechanism of assembly of the outer membrane ofSalmonella typhimurium.J. Biol. Chem. 247:3962–3972PubMedGoogle Scholar
  26. Raetz, C. 1986. Molecular genetics of membrane phospholipid synthesis.Ann. Rev. Genet. 20:253–295CrossRefPubMedGoogle Scholar
  27. Ruthe, J.-J., Adler, J. 1985. Fusion of bacterial spheroplasts by electric fields.Biochim. Biophys. Acta 819:105–113PubMedGoogle Scholar
  28. Sachs, F. 1988. Mechanical transduction in biological systems.CRC Crit. Rev. Biomed. Eng. 16:141–169Google Scholar
  29. Sheetz, M.P., Singer, S.J. 1974. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions.Proc. Natl. Acad. Sci. USA 71:4457–4461PubMedGoogle Scholar
  30. Sokabe, M., Sachs, F., Jing, Z. 1991. Quantitative video microscopy of patch clamped membranes; stress, strain, capacitance, and stretch channel activation.Biophys. J. 59:722–729PubMedGoogle Scholar
  31. Sonntag, I., Schwarz, H., Hirota, Y., Henning, U. 1978. Cell envelope and shape ofEscherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins.J. Bacteriol. 136:280–285PubMedGoogle Scholar
  32. Smit, J., Kamio, Y., Nikaido, H. 1975. Outer membrane ofSalmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants.J. Bacterial. 1214:942–958Google Scholar
  33. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.D., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olsen, B.J., Klenk, D.C. 1985. Measurement of protein using bicinchoninic acid.Anal. Biochem. 150:76–85CrossRefPubMedGoogle Scholar
  34. Sukharev, S.I., Martinac, B., Kung, C. 1992. Solubilization and reconstitution of functional mechanosensitive ion channels fromE. Coli cell envelope.Biophys. J. 61:A513Google Scholar
  35. Zhou, X.-L., Stumpf, M.A., Hoch, H.C., Kung, C. 1991. A mechanosensitive channel in whole cells and in membrane patches of the fungusUromyces.Science 253:1415–1417Google Scholar
  36. Zhou, X.-L., Kung, C. 1992. A mechanosensitive ion channel inSchizosaccharomyces pombe.EMBO J. 11:2869–2875PubMedGoogle Scholar
  37. Zoratti, M., Petronilli, V. 1988. Ion-conducting channels in a gram-positive bacterium.FEBS Lett. 240:105–109CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • Andrzej Kubalski
    • 1
  • Boris Martinact
    • 1
  • Kit-Yin Ling
    • 1
  • Julius Adler
    • 2
    • 3
  • Ching Kung
    • 1
    • 3
  1. 1.Laboratory of Cell and Molecular BiologyUniversity of WisconsinMadison
  2. 2.Department of BiochemistryUniversity of WisconsinMadison
  3. 3.Department of GeneticsUniversity of WisconsinMadison

Personalised recommendations