The physiology of neuroglial cells

  • Stephen W. Kuffler
  • John G. Nicholls


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.)133, 631–655 (1956).Google Scholar
  2. Allen, J. N.: Extracellular space in the central nervous system. Arch. Neurol. Psychiat. (Chic.)73, 241–245 (1955).Google Scholar
  3. Allerand, C. D., andM. D. Yahr: Gamma globulin affinity for normal human tissue of the central nervous system. Science144, 1141–1142 (1964).PubMedGoogle Scholar
  4. Andres, K. H.: Untersuchungen über morphologische Verärungen in Spinalganglien während der retrograden Degeneration. Z Zellforsch.55, 49–79 (1961).PubMedGoogle Scholar
  5. Araki, T., andT. Otani: Response of single motoneurons to direct stimulation in toad's spinal cord. J. Neurophysiol.18, 472–485 (1955)PubMedGoogle Scholar
  6. Bakay, L.: The blood-brain barrier. Springfield, Ill.: Ch. C. Thomas 1956.Google Scholar
  7. Baker, P. F.: A method for the location of extracellular space in crab nerve. J. Physiol. (Lond.)180, 439–447 (1965)Google Scholar
  8. Barlow, C. F., N. S. Domek, M. A. Goldberg, andL. J. Both: Extracellular brain space measured by S35 sulfate. Arch. Neurol. (Chic.)5, 102–110 (1961).Google Scholar
  9. Bennett, H. S., J. H. Luft, andJ. C. Hampton: Morphological classification of vertebrate blood capillaries. Amer. J. Physiol.196, 381–390 (1959).PubMedGoogle Scholar
  10. Bertonlini, B.: Ultrastructure of the spinal cord of the lamprey. 1. Ultrastruct. Res.11, 1–24 (1964).Google Scholar
  11. Birks, R., B. Katz, andR. Miledi: Physiological and structural changes at the amphibian neuromuscular junction, in the course of nerve degeneration. J. Physiol. (Lond.)150, 145–149 (1960).Google Scholar
  12. Blackman, J. G., B. L. Ginsborg, andC. Ray: Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog. J. Physiol. (Lond.)167, 374–388 (1963).Google Scholar
  13. Bondareff, W.: Distribution of ferritin in the cerebral cortex of the mouse revealed by electron microscopy. Exp. Neural.10, 377–382 (1964).Google Scholar
  14. Bornstein, M. B.: A tissue culture approach to demyelinatioe disorders. Nat. Cancer Just. Monogr.11, 197–211 (1963)Google Scholar
  15. ——, andS. H. Appel: Tissue cuture studies of demyelination. In: Research in demyelinating diseases. Ann. N.Y. Acad. Sci.122, 280–286 (1965)PubMedGoogle Scholar
  16. ——, andS. M. Crain: Functional studies of cultured brain tissues as related to “myelinative disorders”. Science148, 1242–1244 (1965).PubMedGoogle Scholar
  17. ——, andM. R. Murray: Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of newborn rat and kitten cerebellum. J. biophys. biochem. Cytol.4, 499–504 (1955).Google Scholar
  18. Bortoff, A.: Localization of slow potential responses in theNecturus retina. Vision Res.4, 627–635 (1964).PubMedGoogle Scholar
  19. Bradbury, M. W. B., andH. Davson: Transport of urea, creatinine and certain monosaccharides between blood and fluid perfusing cerebral ventricular system of rabbit. J. Physiol. (Lond.)170, 195–211 (1964).Google Scholar
  20. Brightman, M. W.: The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J. Cell Biol.26, 99–123 (1965)PubMedGoogle Scholar
  21. ——, andS. L. Palay: The fine structure of ependyma in the brain of the cat. J. Cell Biol.19, 415–439 (1963).PubMedGoogle Scholar
  22. Brinley jr.,F. J.: Ion fluxes in the central nervous system. Int. Rev. Neurobiol.5, 155–242 (1963)Google Scholar
  23. Brodal, A.: Fiber connections of the vestibular nuclei, p. 224–246. In: Neural mechanisms of the auditory and vestibular systems, edit.G. L. Rasmussen, andW. F. Windle. Springfield, Ill.: Ch. C. Thomas 1960.Google Scholar
  24. Brown, K. T., andT. N. Wiesel: Intraretinal recording with micropipette electrodes in the intact cat eye. J. Physiol. (Lond.)149, 537–562 (1959)Google Scholar
  25. Bubis, J. J., andS. A. Luse: An electron microscopic study of experimental allergic encephalitis in the rat. Amer. J. Path.44, 299–318 (1964).PubMedGoogle Scholar
  26. Bunge, M. B., R. P. Bunge, andG. D. Pappas: Electron microscopic demonstration of connections between glia and myelin sheaths in the developing mammalian central nervous system. J. Cell Biol.12, 448–454 (1962).PubMedGoogle Scholar
  27. —— andH. Ris: Ultrastructural study of remyelination in an experimental lesion in adult spinal cord. J. biophys. biochem. Cytol.10, 67–94 (1961).PubMedGoogle Scholar
  28. Bunge, R. P., M. B. Bunge, andE. R. Peterson: An electron microscope study of cultures of rat spinal cord. J. Cell Biol.24, 163–191 (1965)PubMedGoogle Scholar
  29. ——, andP. M. Glass: Some observations on myelin-glial relationships and on the etiology of the cerebrospinal fluid exchange lesion. In: Research in demyelinating diseases. Ann. N.Y. Acad. Sci.122, 15–28 (1965)PubMedGoogle Scholar
  30. Cajal, S. Ramon Y.: Degeneration and regeneration in the nervous system. 2 vols., transl. from Spanish ed. of 1913. Oxford Univ. Press. London: Humphrey Milford 1928.Google Scholar
  31. —— Histology. RevisedJ. F. Tello-Munoz, Translated byM. Fernan-Nunez. Baltimore: William Wood & Co. 1933Google Scholar
  32. —— Histologie du système nerveux de l'homme et des vertébrés. 2 vols. Madrid: Instituto Ramon Y Cajal 1952.Google Scholar
  33. Cammermeyer, J.: Reappraisal of the perivascular distribution of oligodendrocytes. Amer. J. Anat.106, 197–231 (1960).PubMedGoogle Scholar
  34. Chapman-Andresen, C.: Studies on pinocytosis in amoeba. C. R. Lab. Carlsberg33, 73–264 (1962).Google Scholar
  35. Clemente, C. D.: Regeneration in the vertebrate central nervous system. Int. Rev. Neurobiol.6, 257–301 (1964).PubMedGoogle Scholar
  36. Coggeshall, R. E., andD. W. Fawcett: The fine structure of the central nervous system of the leech,Hirudo medicinalis. J. Neurophysiol.27, 229–289 (1964).PubMedGoogle Scholar
  37. Crain, S. M.: Resting and action potentials of cultured chick embryo spinal ganglion cells. J. comp. Neurol.104, 285–330 (1956).PubMedGoogle Scholar
  38. ——, andM. B. Bornstein: Bioelectric activity of neonatal mouse cerebral cortex during growth and differentiation in tissue culture. Exp. Neurol.10, 425–450 (1964).PubMedGoogle Scholar
  39. Cummins, J. T., andH. Hydén: Adenosine phosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim. biophys. Acta (Amst.)60, 271–283 (1962).Google Scholar
  40. Curtis, A. S. G.: Cell contact and adhesion. Biol. Rev.37, 82–129 (1962).PubMedGoogle Scholar
  41. Davson, H.: A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol. (Lond.)129, 111–133 (1955)Google Scholar
  42. —— Physiology of the ocular and cerebrospinal fluids. London: Churchill 1956.Google Scholar
  43. —— The cerebrospinal fluid. Ergebn. Physiol.52, 20–73 (1963).PubMedGoogle Scholar
  44. ——, andM. Pollay: Turnover of24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier. J. Physiol. (Lond.)167, 247–255 (1963)Google Scholar
  45. ——, andE. Spaziani: The blood-brain barrier and the extracellular space of brain. J. Physiol. (Lond.)149, 135–143 (1959).Google Scholar
  46. Deffner, G. G. J., andR. E. Hafter: Chemical investigations of the giant nerve fibres of the squid. III. Identification and quantitative estimation of free organic ninhydrinnegative constituents. Biochim. biophys. Acta (Amst.)42, 189–199 (1960).Google Scholar
  47. De Robertis, E.: Some old and new concepts of brain structure. Wld. Neurol.3, 98–111 (1962).Google Scholar
  48. ——, andH. M. Gerschenfeld: Submicroscopic morphology and function of glial cells. Int. Rev. Neurobiol.3, 1–65 (1961).Google Scholar
  49. Dobbing, J.: The blood-brain barrier. Physiol. Rev.41, 130–188 (1961).PubMedGoogle Scholar
  50. Donahue, S., andG. D. Pappas: The fine structure of capillaries in the cerebral cortex of the rat at various stages of development. Amer. J. Anat.108, 331–347 (1961).PubMedGoogle Scholar
  51. Douglas, W. W., andJ. M. Ritchie: Mammalian nonmyelinated nerve fibers. Physiol. Rev.42, 297–334 (1962).PubMedGoogle Scholar
  52. Dydýnska, M., andD. R. Wilkie: The osmotic properties of striated muscle fibres in hypertonic solutions. J. Physiol. (Lond.)169, 312–329 (1963).Google Scholar
  53. Eckert, R.: Electrical interaction of paired ganglion cells in the leech. J. gen. Physiol.46, 573–587 (1963).PubMedGoogle Scholar
  54. Edström, J. E.: Quantitative determination of ribonucleic acid in the microgram range. J. Neurochem.3, 100–108 (1958).PubMedGoogle Scholar
  55. —— Extraction, hydrolysis and electrophoretic analysis of ribonucleic acid from microscopic tissue units (Microphoresis). J. biophys. biochem. Cytol.8, 39–43 (1960).PubMedGoogle Scholar
  56. ——, andW. Grampp: Nervous activity and metabolism of ribonucleic acids in the crustacean stretch receptor neuron. J. Neurochem.12, 735–741 (1965)PubMedGoogle Scholar
  57. Edström, R.: An explanation of the blood-brain barrier phenomenon. Acta psychiat. scand.33, 403–416 (1958).Google Scholar
  58. —— Recent developments of the blood-brain barrier concept. Int. Rev. Neurobiol.7, 153–190 (1964).Google Scholar
  59. Elliott, K. A. C., andI. H. Heller: Metabolism of neurons and glia, pp. 286–290. In: Metabolism of the nervous system, ed.D. Richter. London: Pergamon Press 1957Google Scholar
  60. Evarts, E. V.: Neuronal activity in visual and motor cortex during sleep and waking. In: Aspects anatomo-fonctionnels de la physiologie du sommeil, ed. Centre National de la Recherche Scientifique, pp. 189–212. Paris 1965.Google Scholar
  61. Farquhar, M. G.: Fine structure and function in capillaries of the anterior pituitary gland. Angiology12, 270–292 (1961).PubMedGoogle Scholar
  62. ——, andJ. F. Hartman: Neuroglial structure and relationships as revealed by electron microscopy. J. Neuropath.16, 18–39 (1957)PubMedGoogle Scholar
  63. ——, andG. E. Palade: Junctional complexes in various epithelia. J. Cell Biol.17, 375–412 (1963)PubMedGoogle Scholar
  64. Fawcett, D. W.: Surface specializations of absorbing cells. J. Histochem. Cytochem.13, 75–91 (1965).PubMedGoogle Scholar
  65. Feldberg, W.: A pharmacological approach to the brain from its inner and outer surface. London: Camelot Press 1963.Google Scholar
  66. ——, andK. Fleischhauer: Penetration of bromophenol blue from the perfused cerebral ventricles into the brain tissue. J. Physiol. (Lond.)150, 451–462 (1960).Google Scholar
  67. Fencl, V., T. B. Miller, andJ. R. Pappenheimer: Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Amer. J. Physiol. (1966) (in press).Google Scholar
  68. Fernandez-Morán, H., andJ. B. Finean: Electron microscope and low-angle X-ray diffraction studies of the nerve myelin sheath. J. biophys. biochem. Cytol.3, 725–748 (1957).PubMedGoogle Scholar
  69. Finean, J. B.: Electron microscope and X-ray diffraction studies of the effects of dehydration on the structure of myelin. I. Peripheral nerve. J. biophys. biochem. Cytol.8, 13–29 (1960).PubMedGoogle Scholar
  70. Fleischhauer, K.: Neuroglia. Dtsch. med. Wschr.85, 2031–2035 (1960).Google Scholar
  71. —— Regional differences in the structure of the ependyma and subependymal layers of the cerebral ventricles of the cat, pp. 279–283 in: Regional neurochemistry, edS. S. Kety andJ. Elkes. London: Pergamon Press 1961.Google Scholar
  72. —— Fluoroscenzmikroskopische Untersuchungen über den Stofftransport zwischen Ventrikelliquor und Gehirn. Z. Zellforsch.62, 639–654 (1964).PubMedGoogle Scholar
  73. Florey, H. W.: The transport of materials across the capillary wall. Quart. J. exp. Physiol.49, 117–129 (1964).Google Scholar
  74. Frankenhaeuser, B., andA. L. Hodgkin: The after-effects of impulses in the giant nerve fibres ofLoligo. J. Physiol. (Lond.)131, 341–376 (1956).Google Scholar
  75. Freygang jr.,W. J., D. A. Goldstein, andD. C. Hellam: The after-potential that follows trains of impulses in frog muscle fibres. J. gen. Physiol.47, 929–952 (1964).PubMedGoogle Scholar
  76. Friede, R. L.: Der Kohlenhydratgehalt der Glia vonHirudo bei verschiedenen Funktionszustiinden. Z. Zellforsch.41, 509–520 (1955).PubMedGoogle Scholar
  77. Friede, R. L.: The cytochemistry of normal and reactive astrocytes. J. Neuropath. exp. Neurol.21, 471–478 (1962).PubMedGoogle Scholar
  78. —— Relationship of body size, nerve cell size, axon length and glial density in the cerebellum. Proc. nat. Acad. Sci. (Wash.)49, 187–193 (1963).Google Scholar
  79. —— Enzymatic response of astrocytes to various ions in vitro. J. Cell Biol.20, 5–15 (1964).PubMedGoogle Scholar
  80. ——, andW. H. van Houten: Neuronal extension and glial supply: Functional significance of glia. Proc. nat. Acad. Sci. (Wash.)48, 817–821 (1962).Google Scholar
  81. Friedmann, U.: Blood-brain barrier. Physiol. Rev.22, 125–245 (1942).Google Scholar
  82. Furshpan, E. J.: “Electrical transmission” at an excitatory synapse in a vertebrate brain. Science144, 878–880 (1964).PubMedGoogle Scholar
  83. Furukawa, T., andE. J. Furshpan: Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophysiol.26, 140–176 (1963).PubMedGoogle Scholar
  84. Gallego, A.: Déscription d'une nouvelle couche céllulaire dans la rétine des mammifères et son rôle functionnel possible. Bull. de l'Assoc. des Anatomists. XLIXe Réunion (Madrid, 6–10 Septembre, 1964), pp. 624–631.Google Scholar
  85. Geiger, R. S.: The behavior of adult mammalian cells in tissue culture. Int. Rev. Neurobiol.5, 1–52 (1963).PubMedGoogle Scholar
  86. Geren, B. B.: The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp. Cell Res.7, 558–562 (1954).Google Scholar
  87. Gerschenfeld, H. M., F. Wald, J. A. Zadunaisky, andE. De Robertis: Functions of astroglia in the water-ion metabolism of the central nervous system. Neurology (Minneap.)9, 412–425 (1959)Google Scholar
  88. Glees, P.: Neuroglia morphology and function. Oxford: Blackwell Sci. Publ. 1955.Google Scholar
  89. Golgi, C.: Opera Omnia, Vol. 1, p. 40. Milano: U. Hoepli 1903a.Google Scholar
  90. —— Opera Omnia, vol. 2, p. 460. Milano: U. Hoepli 1903b.Google Scholar
  91. Gomirato, G., andH. Hydén: A biochemical glia error in Parkinson's disease. Brain86, 773–780 (1963).PubMedGoogle Scholar
  92. Gonatas, N. K., S. Levine, andR. Shoulson: Phagocytosis and regeneration of myelin in an experimental leukoencephalopathy. An electron microscopic study. Amer. J. Path.44, 565–584 (1964).PubMedGoogle Scholar
  93. Good, C. A., H. Kramer, andM. Somogyi: The determination of glycogen. J. biol. Chem.100, 485–491 (1933).Google Scholar
  94. Grampp, W., andJ. E. Edström: The effect of nervous activity on ribonucleic acid of the crustacean stretch receptor neuron. J. Neurochem.10, 725–732 (1963)PubMedGoogle Scholar
  95. Granit, R.: Sensory mechanisms of the retina. London: Oxford University Press 1947.Google Scholar
  96. Gray, E. G.: In: Electron microscopy in Anatomy, edit.J. D. Boyd, pp. 54–61. London: Arnold 1961.Google Scholar
  97. —— Tissue of the central nervous system. In: Electron microscopic anatomy, ed.S. M. Kurtz, pp. 369–471. New York: Academic Press, Inc. 1964.Google Scholar
  98. ——, andR. W. Guillery: An electron microscopical study of the ventral nerve cord of the leech. Z. Zellforsch.60, 826–849 (1963).PubMedGoogle Scholar
  99. Greengard, P., andR. W. Straub: After-potentials in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.)144, 442–462 (1958).Google Scholar
  100. Gruüsser, O. J.: Rezeptorpotentiale einzelner retinaler Zapfen der Katze. Naturwissenschaften44, 522 (1957)Google Scholar
  101. Hagiwara, S., andH. Morita: Electrotonic transmission between two nerve cells in leech ganglion. J. Neurophysiol.25, 721–731 (1962).PubMedGoogle Scholar
  102. Hamberger, A.: Difference between isolated neuronal and vascular glia with respect to respiratory activity. Acta physiol. scand.58, Suppl. 203, 1–52 (1963).Google Scholar
  103. ——, andH. Hydén: Inverse enzymatic changes in neurons and glia during increased function and hypoxia. J. Cell Biol.16, 521–526 (1963)PubMedGoogle Scholar
  104. ——, andH. Röckert: Intracellular potassium in isolated nerve cells and glial cells. J. Neurochem.11, 757–760 (1964).PubMedGoogle Scholar
  105. Harreveld, A. van: Water and electrolyte distribution in central nervous tissue. Fed. Proc.21, 659–664 (1962).Google Scholar
  106. ——J. Crowell, andS. K. Malhotra: A study of extracellular space in cortical nervous tissue by freeze substitution. J. Cell Biol.25, 117–137 (1965).Google Scholar
  107. Hertz, L.: Possible role of neuroglia: A potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature (Lond.)206, 1091–1094 (1965)Google Scholar
  108. Hess, A.: The ground substance of the central nervous system and its relation to the blood-brain barrier. Wld Neurol.3, 118–124 (1962).Google Scholar
  109. Hess, H. H.: The rates of respiration of neurons and neuroglia in human cerebrum. In: Regional neurochemistry, edit.S. S. Kety andJ. Elkes, pp. 200–212. London: Pergamon Press 1961.Google Scholar
  110. Hild, W.: Observations on neurons and neuroglia from the area of the mesencephalic fifth nucleus of the catin vitro. Z. Zellforsch.47, 127–146 (1957).PubMedGoogle Scholar
  111. ——, andI. Tasaki: Morphological and physiological properties of neurones and filial cells in tissue culture. J. Neurophysiol.25, 277–304 (1962).PubMedGoogle Scholar
  112. Hill, A. V.: The diffusion of oxygen and lactic acid through tissues. Proc. roy. Soc. B104, 39–96 (1928).Google Scholar
  113. Hillman, H., andH. Hydén: Membrane potentials in isolated neuronesin vitro from Deiters' nucleus of rabbit. J. Physiol. (Lond.)177, 398–410 (1965).Google Scholar
  114. Hitchcock, D. I.: In: Physical chemistry of cells and tissues, edit.Höber. Philadelphia: Blakiston 1945Google Scholar
  115. Hodgkin, A. L.: Ionic movements and electrical activity in giant nerve fibres. Proc. roy. Soc. B148, 1–37 (1957)Google Scholar
  116. Hoffman, H. J., andJ. Olszewski: Spread of sodium fluorescein in normal brain tissue. A study of the mechanism of the blood-brain barrier. Neurology (Minneap.)11, 1081–1085 (1961).Google Scholar
  117. Holmgren, E.: Weitere Mitteilungen über “Saftkanälchen” der Nervenzellen. Anat. Anz.18, 290–296 (1900).Google Scholar
  118. Horstmann, E.: Zur Frage des extracellulären Raumes im Zentralnervensystem. Verh. Anat. Ges. (Jena), 1959, Suppl. to Anat. Anz.105, 100–107 (1958).Google Scholar
  119. —— Die Neuroglia und ihre physiologische Bedeutung. Verh. Anat. Ges. (Jena), 1962, Suppl. to Anat. Anz.109, 196–203 (1960–1961).Google Scholar
  120. ——, andH. Meves: Die Feinstruktur des molekulären Rindengraues und ihre physiologische Bedeutung. Z. Zellforsch.49, 569–604 (1959)Google Scholar
  121. Hosokawa, H., andH. Mannen: Some aspects of the histology of neuroglia. In: Morphology of neuroglia, edit.J. Nakai, pp. 1–52. Springfield, Ill.: Ch. C. Thomas 1963.Google Scholar
  122. Hubel, D. H., andT. N. Wiesel: Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J. Neurophysiol.28, 229–289 (1965)PubMedGoogle Scholar
  123. Hunt, C. C., andP. G. Nelson: Structural and functional changes in the frog sympathetic ganglion following cutting of the presynaptic fibers. J. Physiol. (Lond.)177, 1–20 (1965)Google Scholar
  124. Hydén, H.: The neuron. In: The cell, edit.J. Brachet andA. Mirsky, vol. IV, p. 215. New York: Academic Press, Inc. 1961.Google Scholar
  125. —— A molecular basis of neuron-glia interaction. In: Macromolecules and biological memory, edit.F. O. Schmitt, pp. 55–69. Cambridge, Mass.: M.I.T. Press (1962a).Google Scholar
  126. —— The neuron and its glia — a biochemical and functional unit. Endeavour21, 144–155 (1962b).PubMedGoogle Scholar
  127. ——, andE. Egyházi: Changes in the base composition of nuclear ribonucleic acid of neurons during a short period of enhanced protein production. J. Cell Biol.15, 37–44 (1962).PubMedGoogle Scholar
  128. —— Glial RNA changes during a learning experiment in rats. Proc. nat. Acad. Sci. (Wash.)49, 618–624 (1963).Google Scholar
  129. —— Changes in RNA content and base composition in cortical neurons of rats in a learning experiment involving transfer of handedness. Proc. nat. Acad. Sci. (Wash.)52, 1030–1035 (1965).Google Scholar
  130. Hydén, H., andP. W. Lange: Differences in the metabolism of oligodendroglia and nerve cells in the vestibular area. In: Regional neurochemistry, edit.S. S. Kety andJ. Elkes, pp. 190–199. London: Pergamon Press 1961.Google Scholar
  131. —— Kinetic study of neurone-glia relationship. J. Cell Biol.13, 233–237 (1962).PubMedGoogle Scholar
  132. —— A differentiation in RNA response in neurons early and late during learning. Proc. nat. Acad. Sci. (Wash.)53, 946–952 (1965a).Google Scholar
  133. —— Rhythmic enzyme changes in neurons and glia during sleep. Science149, 654–656 (1965b).PubMedGoogle Scholar
  134. ——, andA. Pigon: A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiter's nucleus. J. Neurochem.6, 57–72 (1960).PubMedGoogle Scholar
  135. Ito, T.: Zytologische Untersuchungen über die Ganglienzellen des japanischen medizinischen Blutegels,Hirudo nipponica, mit besonderer Berücksichtigung auf die „dunkle Ganglienzelle”. Okajimas Folia anat. jap.14, 111–170 (1936).Google Scholar
  136. Jennings, M. A., V. T. Marchesi, andH. Florey: Transport of particles across the walls of small blood vessels. Proc. roy. Soc. B156, 14–19 (1962).Google Scholar
  137. Karlsson, U., andR. L. Schultz: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space. J. Ultrastruct. Res.12, 160–186 (1965).PubMedGoogle Scholar
  138. Karnovsky, M. L.: Metabolic basis of phagocytic activity. Physiol. Rev.42, 143–168 (1962).PubMedGoogle Scholar
  139. Katz, B., andR. Miledi: A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol. (Lond.)168, 389–422 (1963).Google Scholar
  140. Katzman, R.: Electrolyte distribution in mammalian central nervous system. Are glia high sodium cells? Neurology (Minneap.)11, 27–36 (1961).Google Scholar
  141. Kaye, G. I., S. Donahue, andG. D. Pappas: Electron microscopical evidence for the uptake of colloidal particles by Schwann cellsin situ. J. de Microscop.2, 605–612 (1963)Google Scholar
  142. ——, andG. D. Pappas: Studies on the cornea. I. The fine structure of the rabbit cornea and the uptake and transport of colloidal particles by the corneain vivo. J. Cell Biol.12, 457–479 (1962).PubMedGoogle Scholar
  143. Keynes, R. D., andJ. M. Ritchie: The movement of labelled ions in mammalian nonmyelinated nerve fibers. J. Physiol. (Lond.)179, 333–367 (1965).Google Scholar
  144. Kirsche, W.: Die regenerativen Vorgänge am Rückenmark erwachsener Teleostier nach operativer Kontinuitätstrennung. Z. mikr.-anat. Forsch.56, 190–265 (1951)Google Scholar
  145. Klatzo, I., andJ. Miquel: Observations on pinocytosis in nervous tissue. J. Neuropath. exp. Neurol.19, 475–487 (1960).PubMedGoogle Scholar
  146. ——,P. J. Ferris, L. D. Prockop, andD. E. Smith: Observations on the passage of fluorescein labelled serum proteins (FLSP) from the cerebrospinal fluid. J. Neuropath. exp. Neurol.23, 18–35 (1964).PubMedGoogle Scholar
  147. Kleeman, C. R., H. Davson, andE. Levin: Urea transport in the central nervous system. Amer. J. Physiol.203, 739–747 (1962).PubMedGoogle Scholar
  148. Koch, A., J. B. Ranck jr., andB. L. Newman: Ionic content of the neuroglia. Exp. Neurol.6, 186–200 (1962).PubMedGoogle Scholar
  149. Koelle, G. B.: The histochemical identification of acetyl-cholinesterase in cholinergic, adrenergic and sensory neurons. J. Pharmacol. exp. Ther.114, 167–184 (1955)PubMedGoogle Scholar
  150. Konigsmark, B. W., andR. L. Sidman: Origin of brain macrophages in the mouse. J. Neuropath. exp. Neurol.22, 643–676 (1963)PubMedGoogle Scholar
  151. Korey, S. R., andM. Orchen: Relative respiration of neuronal and glial cells. J.Neurochem.3, 277–285 (1959).PubMedGoogle Scholar
  152. Krivánek, J.: Quantitative histochemistry of central nervous system. Fed. Proc. Trans. Suppl.24, 786–798 (1965).Google Scholar
  153. Kuffler, S. W., J. G. Nicholls, andR. Orkand: Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol.29, July 1966.Google Scholar
  154. Kuffler, S. W., andD. D. Potter: Glia in the leech central nervous system. Physiological properties and neuron-glia relationship. J. Neurophysiol.27, 290–320 (1964).PubMedGoogle Scholar
  155. Lajtha, A.: Protein metabolism of the nervous system. Int. Rev. Neurobiol.6, 1–98 (1964).Google Scholar
  156. Lampert, P. W.: Demyelination and remyelination in experimental allergic encephalomyelitis. J. Neuropath. exp. Neurol.24, 371–385 (1965).Google Scholar
  157. ——, andS. Carpenter: Electron microscopic studies on the vascular permeability and the mechanism of demyelination in experimental allergic encephalomyelitis. J. Neuropath. exp. Neurol.24, 11–24 (1965).PubMedGoogle Scholar
  158. Landolt, A. M.: Elektronmikroskopische Untersuchungen an der Perikaryenschichte der Corpora pedunculata von Waldameisen (Formica lugubris Zett.) mit besonderer Berücksichtigung der Neuron-Glia-Beziehung. Z. Zellforsch.66, 701–736 (1965).PubMedGoogle Scholar
  159. Lasansky, A., andF. Wald: The extracellular space in the toad retina as defined by the distribution of ferrocanide. A light and electronmicroscopic study. J. Cell Biol.15, 463–479 (1962).PubMedGoogle Scholar
  160. Leão, A. A. P., andR. S. Morison: Propagation of spreading cortical depression. J. Neurophysiol.8, 33–45 (1945).Google Scholar
  161. Lessell, S., andT. Kuwabara: Retinal neuroglia, Arch. Ophthal.70, 671–678 (1963).PubMedGoogle Scholar
  162. Lewis, W. H.: Pinocytosis. Bull. Johns Hopk. Hosp.49, 17–23 (1931).Google Scholar
  163. Little, M. S., andJ. Morris: Glia bibliography 1960–1964. Neurosci. Res. Program Bull.2, Suppl. (1965).Google Scholar
  164. Loewenstein, W. R., andY. Kanno: Studies on an epithelial (gland) cell junction. I. Modifications of surface membrane permeability. J. Cell Biol.22, 565–586 (1964).PubMedGoogle Scholar
  165. ——S. J. Socolar, S. Higashino, Y. Kanno, andN. Davidson: Intercellular communication: renal, urinary bladder, sensory, and salivary gland cells. Science149, 295–298 (1965)PubMedGoogle Scholar
  166. Lumsden, C. E.: Histological and histochemical aspects of normal neuroglial cells. In Biology of neuroglia, edit.W. F. Windle, pp. 141–161. Sprinfield, Ill.: Ch. C. Thomas 1958.Google Scholar
  167. ——, andC. M. Pomerat: Normal oligodendrocytes in tissue culture. Exp. Cell Res.2, 103–114 (1951).Google Scholar
  168. Luse, S. A.: Ultrastructure of the brain and its relation to transport of metabolites. Res. Publ. Ass. nerv. ment. Dis.40, 1–26 (1962).Google Scholar
  169. MacNichol, E. F., andG. Svaetichin: Electric responses from the isolated retinas of fishes. Amer. J. Ophthal.46, 26–46 (1958).PubMedGoogle Scholar
  170. Majno, G., andG. E. Palade: Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study. J. biophys. biochem. Cytol.11, 571–606 (1961).PubMedGoogle Scholar
  171. Marón, K.: Regeneration capacity of the spinal cord inLampetra fluviatilis larvae. Folia biol. (Warsaw)7, 179–189 (1959).Google Scholar
  172. Marshall, J. M., andV. T. Nachmias: Cell surface and pinocytosis. J. Histochem. Cytochem.13, 92–104 (1965).PubMedGoogle Scholar
  173. Maturana, H. R.: The fine anatomy of the optic nerve of Anurans — an electron microscope study. J. biophys. biochem. Cytol.7, 107–120 (1960).PubMedGoogle Scholar
  174. Maynard, E. A., R. L. Schultz, andD. C. Pease: Electron microscopy of the vascular bed of rat cerebral cortex. Amer. J. Anat.100, 409–433 (1957).PubMedGoogle Scholar
  175. McIlwain, H.: Chemical exploration of the brain. London: Elsevier Publ. Co. 1963Google Scholar
  176. Miller, F.: Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J. biophys. biochem. Cytol.8, 689–718 (1960).PubMedGoogle Scholar
  177. Mitarai, G.: Determination of ultramicroelectrode tip position in the retina in relation to S potential. J. gen. Physiol.43, Suppl. 95–100 (1960).PubMedGoogle Scholar
  178. Moruzzi, G.: Active processes in the brain stem during sleeping. Harvey Lect. Series58, 233–297 (1963).Google Scholar
  179. Motokawa, K.: Mechanism for the transfer of information along the visual pathways. Int. Rev. Neurobiol.5, 212–181 (1963)Google Scholar
  180. Motokawa, K., T. Oikawa, andK. Tasaki: Receptor potential of vertebrate retina. J. Neurophysiol.20, 186–199 (1957).PubMedGoogle Scholar
  181. Mugnaini, E., andF. Walberg: Ultrastructure of neuroglia. Ergebn. Anat. Entwickl.-Gesch.37, 193–236 (1964).Google Scholar
  182. Muir, A. R., andA. Peters: Quintuple-layered membrane junctions at terminal bars between endothelial cells. J. Cell Biol.12, 443–448 (1962).PubMedGoogle Scholar
  183. Nageotte, J.: Phénomènes de sécrétion dans la protoplasma des cellules nérvogliques de la substance grise. C. R. Soc. Biol. (Paris)68, 1068–1069 (1910).Google Scholar
  184. Nakai, J., edit.: Morphology of neuroglia. Springfield, Ill.: Ch. C. Thomas 1963Google Scholar
  185. Nakajima, V., J. D. Pappas, andM. V. L. Bennett: The fine structure of the supramedullary neurons of the Puffer with special reference to endocellular and pericellular capillaries. Amer. J. Anat.116, 471–492 (1965).PubMedGoogle Scholar
  186. Nicholls, J. G., andD. E. Wolfe: The distribution of14C-labelled sucrose, inulin and dextran in extracellular space and in cells of the central nervous system of the leech (in preparation).Google Scholar
  187. ——, andS. W. Kuffler: Extracellular space as a pathway for exchange between blood and neurons in central nervous system of leech: The ionic composition of glial cells and neurons. J. Neurophysiol.27 645–673, (1964).PubMedGoogle Scholar
  188. —— Na and K content of glial cells and neurons determined by flame photometry in the central nervous system of the leech. J. Neurophysiol.28, 519–525, (1965)PubMedGoogle Scholar
  189. Nurnberger, J. I., andM. W. Gordon: The cell density of neural tissues: Direct counting method and possible applications as a biologic referent. In: Ultrastructure and cellular chemistry of neural tissue, edit.H. Waelsch. New York: Hoeber 1957.Google Scholar
  190. Oksche, A.: Histologische Untersuchungen über die Bedeutung des Ependyms, der Glia und der Plexus Choroidei für den Kohlenhydratstoffwechsel des ZNS. Z. Zellforsch.48, 74–129 (1958).PubMedGoogle Scholar
  191. —— Der histochemisch nachweisbare Glykogenaufbau und -Abbau in den Astrocyten und Ependymzellen als Beispiel einer funktionsabhängigen Stoffwechselaktivität der Neuroglia. Z. Zellforsch.54, 307–361 (1961).PubMedGoogle Scholar
  192. Orkand, R. K., J. G. Nicholls, andS. W. Kuffler: The effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol.29, July 1966.Google Scholar
  193. Palacios, O., andG. E. Petze: Zur Frage der Erzeugung einer „Allergischen Polyneuritis” in Kaninchen mit Schwannschem Zellgewebekultur-Antigen. Z. Immunitdtsu. Allergieforsch.126, 122–124 (1964).Google Scholar
  194. Palade, G. E.: Blood capillaries of the heart and other organs. Circulation24, 368–384 (1961).PubMedGoogle Scholar
  195. Palay, S. L.: Synapses in the central nervous system. J. biophys. biochem. Cytol.2 (Suppl.), 193–201 (1956).PubMedGoogle Scholar
  196. —— The fine structure of the neurohypophysis. In: Progress in neurobiology. II. Ultrastructure and cellular chemistry of neural tissue, edit.H. Waelsch, pp. 31–44. New York: Hoeber-Harper 1957.Google Scholar
  197. —— An electron microscopical study of neuroglia. In: Biology of neuroglia, edit.W. F. Windle, pp. 24–38. Springfield, Ill.: Ch. C. Thomas 1958a.Google Scholar
  198. —— The morphology of synapses in the central nervous system. Exp. Cell Res., Suppl.5, 275–293 (1958b).Google Scholar
  199. —— andL. J. Karlin: An electron microscopic study of the intestinal villus. I. The fasting animal. J. biophys. biochem. Cytol.5, 363–371 (1959a).PubMedGoogle Scholar
  200. ——: An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J. biophys. biochem. Cytol.5, 372–383 (1959b).Google Scholar
  201. —— andJ. P. Revel: The morphology of fat absorption. In: Lipid transport, edit.H. C. Meng, pp. 1–11. Springfield, Ill.: Ch. C. Thomas 1964.Google Scholar
  202. Pappas, G. D., andV. M. Tennyson: An electron microscopic study of the passage of colloidal particles from the blood vessels of the ciliary processes and choroid plexus of the rabbit. J. Cell Biol.15, 227–239 (1962).PubMedGoogle Scholar
  203. Pappenheimer, J. R.: Passage of molecules through capillary walls. Physiol. Rev.33, 387–423 (1953).PubMedGoogle Scholar
  204. ——V. Fencl, S. R. Heisey, andD. Held: Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Amer. J. Physiol.208, 436–450 (1965).PubMedGoogle Scholar
  205. Penfield, W., edit.: Cytology and cellular pathology of the nervous system, vol. 2. New York: Paul B. Hoeber 1932.Google Scholar
  206. Peters, A.: The formation and structure of myelin sheaths in the central nervous system. J. biophys. biochem. Cytol.8, 431–446 (1960).PubMedGoogle Scholar
  207. —— Anatomical considerations of the site of the blood-brain barrier. J. Anat. (Lond.)95, Suppl, 20–22 (1961).Google Scholar
  208. —— Plasma membrane contacts in the central nervous system. J. Anat. (Lond.)96, 237–248 (1962).Google Scholar
  209. —— Observations on the connexions between myelin sheaths and glial cells in the optic nerves of young rats. J. Anat. (Lond.)98, 125–134 (1964).Google Scholar
  210. ——, andS. L. Palay: An electron microscope study of the distribution and patterns of astroglial processes in the central nervous system. J. Anat. (Lond.)99, 419 (1965)Google Scholar
  211. Pette, E., andH. Bauer, edits.: Experimental contributions to the pathogenesis of the demyelinating encephalomyelitides. Z. Immunitäts- u. Allergieforsch.126, 1–248 (1964).Google Scholar
  212. Pipa, R. L.: Studies on the hexapod nervous system. III. Histology and histochemistry of cockroach neuroglia. J. comp. Neurol.116, 15–26 (1961).PubMedGoogle Scholar
  213. Pomerat, C. M.: Dynamic neurogliology. Tex. Rep. Biol. Med.10, 883–913 (1952).Google Scholar
  214. —— Cinematographic analysis of cell dynamics. Fed. Proc.17, 975–984 (1958).PubMedGoogle Scholar
  215. —— Functional concepts based on tissue culture studies of neuroglial cells. In: Biology of neuroglia, edit.W. F. Windle, pp. 162–180. Springfield, Ill.: Ch. C. Thomas 1958.Google Scholar
  216. Pope, A.: Implication of histochemical studies for metabolism of the neuroglia In: Biology of neuroglia, edit.W. F. Windle, pp. 211–233. Springfield, Ill.: Ch. C. Thomas 1958.Google Scholar
  217. ——, andH. H. Hess: Cytochemistry of neurones and neuroglia, pp. 72–82. In: Metabolism of the nervous system, edit.D. Richter. London: Pergamon Press 1957.Google Scholar
  218. Potanos, J. N., A. Wolf, andD. Cowen: Cytochemical localization of oxidative enzymes in human nerve cells and neuroglia. J. Neuropath. exp. Neurol.18, 627–635 (1959)PubMedGoogle Scholar
  219. Rall, D. P.: The structure and function of the cerebrospinal fluid, pp. 269–282. In: The cellular functions of membrane transport, edit.J. F. Hoffman. Englewood Cliffs, N. J.: Prentice-Hall 1964.Google Scholar
  220. ——, andC. G. Zubrod: Mechanisms of drug absorption and excretion. Ann. Rev. Pharmacol.2, 109–128 (1962).Google Scholar
  221. Reed, D. J., andD. M. Woodbury: Kinetics of movement of iodide, sucrose, inulin and radio-iodinated serum albumin (RISA) in the central nervous system and cerebrospinal fluid of the rat. J. Physiol. (Lond.)169, 816–850 (1963).Google Scholar
  222. Rio Hortega, P. del: Tercera aportacion al conocimiento morfologico y interpretation functional de la oligodendroglia. Mem. Real. Soc. Esp. Hist. Nat.14, 1–122 (1928).Google Scholar
  223. Rio Hortega, P. del: Microglia. In: Cytology and cellular pathology of the nervous system, vol. II, edit.W. Penfield, pp. 483–543. New York: Paul B. Hoeber Inc. 1932.Google Scholar
  224. Rivers, T. M., andF. F. Schwentker: Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J. exp. Med.61, 689–702 (1935).PubMedGoogle Scholar
  225. Roberts, E., andC. F. Baxter: Neurochemistry. Ann. Rev. Biochem.32, 513–552 (1963).PubMedGoogle Scholar
  226. Roberts, N. R., R. R. Coelho, O. H. Lowry, andE. J. Crawford: Enzyme activities of giant squid axoplasm and axon sheath. J. Neurochem.3, 109–116 (1958).PubMedGoogle Scholar
  227. Robertson, J. D., T. S. Bodenheimer, andD. E. Stage: The ultrastructure of Mauthner cell synapses and nodes in goldfish brains. J. Cell Biol.19, 157–199 (1964).Google Scholar
  228. Roots, B. I., andP. V. Johnston: Isolated rabbit neurons: electron microscopical observations. Nature (Lond.)207, 315–316 (1965).Google Scholar
  229. Rosenbluth, J.: The visceral ganglion ofAplysia californica. Z. Zellforsch.60, 213–236 (1963).PubMedGoogle Scholar
  230. ——, andS. L. Wissig: The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol.23, 307–325 (1964).PubMedGoogle Scholar
  231. Rugh, R.: Vertebrate embryology, p. 437. New York: Harcourt, Brace and World, Inc., 1964.Google Scholar
  232. Ryser, H. J. P.: The measurement of I131-serum albumin uptake by tumor cells in tissue culture. Lab. Invest.12, 1009–1017 (1963)PubMedGoogle Scholar
  233. Scharrer, E.: The blood vessels of the nervous tissue. Quart. Rev. Biol.19, 308–318 (1944).Google Scholar
  234. Schultz, R. L.: Macroglial identification in electron micrographs. J. comp. Neurol.122, 281–296 (1964).PubMedGoogle Scholar
  235. Schultz, R., E. C. Berkowitz, andD. C. Pease: The electron microscopy of the lamprey spinal cord. J. Morph.98, 251–274 (1956).Google Scholar
  236. Schultz, R. L., andU. Karlsson: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. II. Effect of osmolarity, pH of perfusate, and fixative concentration. J. Ultrastruct. Res.12, 187–206 (1965).PubMedGoogle Scholar
  237. Schultz, R. L., E. A. Maynard, andD. C. Pease: Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Amer. J. Anat.100, 369–407 (1957).PubMedGoogle Scholar
  238. Sidman, R. L., M. M. Dickie, andS. Appel: Mutant mice (Quaking andJimpy) with deficient myelination in the central nervous system. Science144, 309–311 (1964).PubMedGoogle Scholar
  239. Sjöstrand, F. S.: Topographic relationship between neurons, synapses and glial cells. In: The visual system: Neurophysiology and psychophysics, edit.R. Jung andH. Kornhuber, pp. 13–24. Berlin: Springer 1961.Google Scholar
  240. Smith, D. S., andJ. E. Treherne: Functional aspects of the organization of the insect nervous system. In: Advances in insect physiology, vol. I, ed.J. W. L. Beamont, J. E. Treherne andV. B. Wigglesworth. New York: Academic Press, Inc. 1963.Google Scholar
  241. Sokoloff, L.: Local cerebral circulation at rest and during altered cerebral activity induced by anaesthesia or visual stimulation. In: Regional neurochemistry, ed.S. S. Kety andJ. Elkes, pp. 107–117. Oxford: Pergamon Press 1961.Google Scholar
  242. ——, andS. S. Kety: Regulation of cerebral circulation. Physiol. Rev., Suppl.4, 38–44 (1960).Google Scholar
  243. Stell, W. K.: Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat. Rec.153, 389–397 (1965).PubMedGoogle Scholar
  244. Streicher, E.: Thiocyanate space of rat brain. Amer. J. Physiol.201, 334–336 (1961).Google Scholar
  245. Svaetichin, G., M. Langer, G. Mitarai, R. Fatehchand, E. Vallecalle, andJ. Villegas: Glial control of neuronal networks and receptors. In: The visual system: Neurophysiology and psychophysics, ed.R. Jung andH. Kornhuber, pp. 445–463. Berlin: Springer 1961.Google Scholar
  246. ——, andE. F. MacNichol jr.: Retinal mechanisms for chromatic and achromatic vision. Ann. N.Y. Acad. Sci.74, 385–404 (1958).Google Scholar
  247. ——,K. Negishi, R. Fatehchand, B. D. Drujan, andA. Selvin de Testa: Nervous function based on interactions between neuronal and non-neuronal elements. In Progress in brain research. Biology of neuroglia, vol. 15, ed.E. De Robertis andR. Carrea, pp. 1513–1535 Amsterdam: Elsevier Publ. Co. 1965Google Scholar
  248. Tasaki, I., andJ. J. Chang: Electric response of glia cells in cat brain. Science128, 1209–1210 (1958).PubMedGoogle Scholar
  249. Taxi, J.: Sur la structure des travées du plexus d'Auerbach: confrontation des données fournies par le microscope électronique. Ann. Sci. Nat. Zool., Ser. XII (1959)Google Scholar
  250. Tomita, T.: A study on the origin of intraretinal action potential of the cyprinid fish by means of a pencil-type microelectrode. Jap. J. Physiol.7, 80–85 (1957)Google Scholar
  251. Torack, R. M., M. L. Duffy, andJ. M. Haynes: The effect of anisotonic media upon cellular ultrastructure in fish and fixed rat brain. Z. Zellforsch.66, 690–700 (1965).PubMedGoogle Scholar
  252. ——,R. D. Terry, andH. M. Zimmermann: The fine structure of cerebral fluid accumulation. Amer. J. Path.36, 273–288 (1960).PubMedGoogle Scholar
  253. Treherne, J. E.: The distribution and exchange of some ions and molecules in the central nervous system ofPeriplanets americana L. J. exp. Biol.39, 193–217 (1962a).PubMedGoogle Scholar
  254. —— Transfer of substances between the blood and central nervous system in vertebrate and invertebrate animals. Nature (Lond.)196, 1181–1183 (1962b).Google Scholar
  255. Tschirgi, R. D.: Chemical environment of the central nervous system. In: Neurophysiology III. Handbook of physiology, edit.J. Field. Washington, D. C.: Amer. Physiol. Soc. 1960.Google Scholar
  256. —— Blood-brain barrier: fact or fancy? Fed. Proc.21, 665–671 (1962).PubMedGoogle Scholar
  257. Villegas, G. M., andR. Villegas: Extracellular pathways in the peripheral nerve fibres: Schwann-cell-layer permeability to thorium dioxide. Biochim. biophys. Acts (Amst.)88, 231–233 (1964).Google Scholar
  258. Villegas, R., L. Villegas, M. Gimenez, andG. M. Villegas: Schwann cell and axon electrical potential differences: Squid nerve structure and excitable membrane location. J. gen. Physiol.46, 1047–1064 (1963)PubMedGoogle Scholar
  259. Virchow, R.: Cellular pathology as based upon physiological and pathological histology. Translated by F. CHANCE from 2nd edit. ofR. Virchows Cellularpathologie. Berlin: Hirschwald 1859.Google Scholar
  260. Waksman, B. H., andR. D. Adams: A histology study of the early lesion in experimental allergic encephalomyelitis in the guinea pig and rabbit. Amer. J. Path.41, 135–162 (1962).PubMedGoogle Scholar
  261. Wardell, W. M.: “Dielectric breakdown” as a second mechanism of the electrical response of neuroglia. J. Physiol. (Lond.)175, 52–54P (1964).Google Scholar
  262. Weil-Malherbe, H., G. Whitby, andJ. Axelrod: The blood-brain barrier for catecholamines in different regions of the brain. In: Regional neurochemistry, ed.S. S. Kety andJ. Elkes. London: Pergamon Press 1961.Google Scholar
  263. Whipple, H. E., ed.: Research in demyelinating diseases. Ann. N.Y. Acad. Sci.122, 1–570 (1965)Google Scholar
  264. Wigglesworth, V. B.: The nutrition of the central nervous system in the cockroachPeriplaneta americana L. The role of the perineurimn and glial cells in the mobilization of reserves. J. exp. Biol.37, 500–512 (1960).Google Scholar
  265. Windle, W. F.: Regeneration of axons in the vertebrate central nervous system. Physiol. Rev.36, 427–440 (1956).PubMedGoogle Scholar
  266. —— edit.: Biology of neuroglia. Springfield, Ill.: Ch. C. Thomas 1958.Google Scholar
  267. Wolfe, D. E.: Electron microscopic observations on the optic nerve of Necturus. (In preparation.)Google Scholar
  268. —, andJ. G. Nicholls: The uptake of radioactive glucose and its conversion to glycogen by neurons and glial cells in the central nervous system of the leech (in preparation).Google Scholar
  269. Wolff, J.: Beiträge zur Ultrastruktur der Kapillaren in der normalen Großhirnrinde. Z. Zellforsch.60, 409–431 (1963).PubMedGoogle Scholar
  270. —— Elektronmikroskopische Untersuchungen dber Struktur und Gestalt von Astrozytenfortsätzen. Z. Zellforsch.66, 811–828 (1965).PubMedGoogle Scholar
  271. Wolff, P. H., andR. D. Tschirgi: Inability of cerebrospinal fluid to nourish the spinal cord. Amer. J. Physiol.184, 220–222 (1956).PubMedGoogle Scholar
  272. Wyckoff, R. W. G., andJ. Z. Young: The motorneuron surface. Proc. roy. Soc. B144, 440–450 (1956).Google Scholar

Copyright information

© Springer-Verlag 1966

Authors and Affiliations

  • Stephen W. Kuffler
    • 1
  • John G. Nicholls
    • 1
  1. 1.Neurophysiology Laboratory, Department of PharmacologyHarvard Medical SchoolBostonUSA

Personalised recommendations