The organization of the vertebrate retinal elements

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Adrian, E. D.: Mechanism of nervous action. Oxford 1932.

  2. 2.

    Adrian, E. D.: Visual responses in the cat and monkey. J. of Physiol 100, 9P (1941).

  3. 3.

    — Rod and cone components in the electric response of the eye. J. of Physiol. 105, 24–37 (1946).

    Article  Google Scholar 

  4. 4.

    —, and R. Matthews: The action of light on the eye. The discharge of impulses in the optic nerve and its relation to the electric change in the retina. J. of Physiol. 63, 378–414 (1927).

    CAS  Article  Google Scholar 

  5. 5.

    — The action of light on the eye. Part II. The processes involved in retinal excitation. J. of Physiol. 64, 279–301 (1927).

    CAS  Article  Google Scholar 

  6. 6.

    — The action of light on the eye. Part III. The interaction of retinal neurones. J. of Physiol. 65, 273–298 (1928).

    CAS  Article  Google Scholar 

  7. 7.

    Ball, S., F. D. Collins, R. A. Morton and A. L. Stubbs: Chemistry of visual process. Nature (Lond.) 1948, 161, 424.

  8. 8.

    —, R. A. Morton and T. W. Goodwin: Retinene1-vitamin A aldehyde. Biochemic. J. 40, Proc. 59 (1946).

    Article  Google Scholar 

  9. 9.

    Bayliss, L. E., R. J. Lythgoe and K. Tansley: Some new forms of visual purple found in sea fishes, with a note on the visual cells of origin. Proc. roy. Soc. Lond. B 120, 95–113 (1936).

    CAS  Article  Google Scholar 

  10. 10.

    Bernhard, C. G.: Isolation of retinal and optic ganglion response in the eye of Dytiscus. J. of Neurophysiol. 5, 32–48 (1942).

    Google Scholar 

  11. 11.

    —, R. Granit and C. R. Skoglund: The breakdown of accommodation—nerve as model sense organ. J. of Neurophysiol. 5, 55–68 (1942).

    Google Scholar 

  12. 12.

    Bills, M. A.: The lag of visual sensation in its relation to wave-lengths and intensity of light. Psychol. Monogr. 28, 1–101 (1920).

    Article  Google Scholar 

  13. 13.

    Bliss, A. F.: Derived photosensitive pigments from invertebrate eyes. J. gen. Physiol. 26, 361–367 (1943).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    — The chemistry of daylight vision. J. gen. Physiol. 29, 277–297 (1946).

    CAS  PubMed Central  Article  Google Scholar 

  15. 15.

    — The mechanism of retinal vitamin A formation. J. of biol. Chem. 172, 165–178 (1948).

    CAS  Google Scholar 

  16. 16.

    — The absorption spectra of visual purple of the squid and its bleaching products. J. of biol. Chem. 176, 563–569 (1948).

    CAS  Google Scholar 

  17. 17.

    Bogoslowski, A. J., et J. Segal: La sensibilité électrique de l'oeil. I. J. Physiol. et Path. gén. 39, 101–117 (1946).

    Google Scholar 

  18. 18.

    — La sensibilité électrique de l'oeil. II. J. Physiol. et Path. gén. 39, 87–99 (1946).

    Google Scholar 

  19. 19.

    Brooks, C. McC., and J. C. Eccles: An electrical hypothesis of central inhibition. Nature (Lond.) 159, 760–764 (1947).

    CAS  Article  Google Scholar 

  20. 20.

    — Inhibitory action on a motor nucleus and focal potentials generated therein. J. of Neurophysiol. 11, 401–416 (1948).

    CAS  Google Scholar 

  21. 21.

    — Inhibition of antidromic responses of motoneurones. J. of Neurophysiol. 11, 431–445 (1948).

    CAS  Google Scholar 

  22. 22.

    —, and J. L. Malcolm: Synaptic potentials of inhibited motoneurones. J. of Neurophysiol. 11, 417–431 (1948).

    CAS  Google Scholar 

  23. 23.

    Chase, A. M., and C. Haig: The absorption spectrum of visual purple. J. gen. Physiol. 21, 411–430 (1938).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Creed, R. S., D. Denny-Brown, J. C. Eccles, E. G. T. Liddell and C. S. Sherrington: Reflex activity of the spinal cord. Oxford 1932.

  25. 25.

    Dartnall, H. J. A.: Visual purple and the photopic luminosity curve. Brit. J. Ophthalm. 32, 793–811 (1948).

    CAS  Article  Google Scholar 

  26. 26.

    —, and C. F. Goodeve: Scotopic luminosity curve and the absorption spectrum of visual purple. Nature (Lond.) 139, 409 (1937).

    Article  Google Scholar 

  27. 27.

    Donner, K. O.: Variations, due to colour, in the spike frequency-time curves of single retinal elements. Experientia 5, 413 (1949). Later in full in Acta physiol. scand. (Stockh.) 1950. In course of publication.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    —, and R. Granit: Scotopic dominator and state of visual purple in the retina. Acta physiol. scand. (Stockh.) 17, 161–169 (1949).

    CAS  Article  Google Scholar 

  29. 29.

    — The effect of illumination upon the sensitivity of isolated retinal elements to polarization. Acta physiol. scand. (Stockh.) 18, 113–120 (1949).

    CAS  Article  Google Scholar 

  30. 30.

    Euler, H. v., u. E. Adler: Über die Verbreitung von Lyochromen und von Vitamin B2. Sv. Kem. Tidskr. 45, 276–280 (1933).

    Google Scholar 

  31. 31.

    Forbes, A., B. Renshaw and B. Rempel: Units of electrical activity in the cerebral cortex. Amer. J. Physiol. 119, 309–310 (1937).

    Google Scholar 

  32. 32.

    Gernandt, B.: Colour sensitivity, contrast and polarity of the retinal elements. J. of Neurophysiol. 10, 303–308 (1947).

    CAS  Google Scholar 

  33. 33.

    — The form variations of the spike recorded by a micro-electrode applied on to the mammalian retina. Acta physiol. scand. (Stockh.) 15, 88–92 (1948).

    CAS  Article  Google Scholar 

  34. 34.

    — Polarity of dark adapted retinal on/off-elements as a function of wave-length. Acta physiol. scand. (Stockh.) 15, 286–289 (1948).

    Article  Google Scholar 

  35. 35.

    — Selective adaptation and the off/on-ratio of the retinal on/off-elements. Acta physiol. scand. (Stockh.) 17, 150–160 (1949).

    CAS  Article  Google Scholar 

  36. 36.

    Gernandt, B.: 'Adaptation factors’ to weak light adaptation of isolated retinal elements. Acta physiol. scand. (Stockh.) 18, 19–25 (1949).

    CAS  Article  Google Scholar 

  37. 37.

    —, and R. Granit: Single fibre analysis of inhibition and the polarity of the retinal elements. J. of Neurophysiol. 10, 295–302 (1947).

    CAS  Google Scholar 

  38. 38.

    Graham, C. H., and H. K. Hartline: The response of single visual sense cells to lights of different wave-lengths. J. gen. Physiol. 18, 917–931 (1935).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Granit, R.: Comparative studies on the peripheral and central retina. I. On interaction between distant areas in the human eye. Amer. J. Physiol. 94, 41–50 (1930).

    Google Scholar 

  40. 40.

    — The components of the retinal action potential and their relation to the discharge in the optic nerve. J. of Physiol. 77, 207–240 (1933).

    CAS  Article  Google Scholar 

  41. 41.

    — Rotation of activity and spontaneous rhythms in the retina. Acta physiol. scand. (Stockh.) 1, 370–379 (1941).

    Article  Google Scholar 

  42. 42.

    — The “red” receptor of Testudo. Acta physiol. scand. (Stockh.) 1, 386–388 (1941).

    CAS  Article  Google Scholar 

  43. 43.

    — Isolation of colour-sensitive elements in a mammalian retina. Acta physiol. scand. (Stockh.) 2, 93–109 (1941).

    Article  Google Scholar 

  44. 44.

    — A relation between rod and cone substances based on scotopic and photopic spectra of Cyprinus, Tinca, Anguilla, and Testudo. Acta physiol. scand (Stockh.) 2, 334–346 (1941).

    Article  Google Scholar 

  45. 45.

    — Colour receptors of the frog's retina. Acta physiol. scand. (Stockh.) 3, 137–151 (1941).

    Article  Google Scholar 

  46. 46.

    — Spectral properties of the visual receptor elements of the guinea pig. Acta physiol. scand. (Stockh.) 3, 318–328 (1942).

    CAS  Article  Google Scholar 

  47. 47.

    — “Red” and “Green” receptors in the retina of Tropidonotus. Acta physiol. scand. (Stockh.) 5, 108–113 (1943).

    Article  Google Scholar 

  48. 48.

    — The spectral properties of the visual receptors of the cat. Acta physiol. scand. (Stockh.) 5, 219–229 (1943).

    Article  Google Scholar 

  49. 49.

    — Stimulus intensity in relation to excitation and pre-and post-excitatory inhibition in isolated elements of mammalian retinae. J. of Physiol. 103, 103–118 (1944).

    CAS  Article  Google Scholar 

  50. 50.

    Granit, R.: Some properties of post-excitatory inhibition studied in the optic nerve with micro-electrodes. Vet. Akad. Arkiv Zool. A36, No 11 (1945).

    Google Scholar 

  51. 51.

    — The distribution of excitation and inhibition in single-fibre responses from a polarized retina. J. of Physiol. 105, 45–53 (1946).

    Article  Google Scholar 

  52. 52.

    — Sensory mechanisms of the retina. London: Oxford Univ. Press 1947.

    Google Scholar 

  53. 53.

    — Neural organization of the retinal elements, as revealed by polarization. J. of Neurophysiol. 11, 239–252 (1948).

    CAS  Google Scholar 

  54. 54.

    — The mammalian colour modulators. J. of Neurophysiol. 11, 253–260 (1948).

    CAS  Google Scholar 

  55. 55.

    — The effect of two wave lengths of light upon the same retinal element. Acta physiol. scand. (Stockh.) 18, 281–294 (1949).

    Article  Google Scholar 

  56. 56.

    —, and T. Helme: Changes in retinal excitability due to polarization and some observations on the relation between the processes in retina and nerve. J. of Neurophysiol. 2, 556–565 (1939).

    Google Scholar 

  57. 57.

    —, and Svaetichin: Principles and technique of the electrophysiological analysis of colour reception with the aid of microelectrodes. Uppsala Läk. för. Förh. 65, 161–177 (1939).

    Google Scholar 

  58. 58.

    —, and K. Tansley: Rods, cones and the localization of preexcitatory inhibition in the mammalian retina. J. of Physiol. 107, 54–66 (1948).

    CAS  Article  Google Scholar 

  59. 59.

    Granit, R., and P. O. Therman: Inhibition of the off-effect in the optic nerve and its relation to the equivalent phase of the retinal response. J. of Physiol. 81, 47P (1934).

  60. 60.

    — Excitation and inhibition in the retina and in the optic nerve. J. of Physiol. 83, 359–381 (1935).

    CAS  Article  Google Scholar 

  61. 61.

    — and C. M. Wrede: Selective effects of different adapting wave-lengths on the dark adapted frog's retina. Skand. Arch. Physiol. (Berl. u. Lpz.) 80, 142–155 (1938).

    Article  Google Scholar 

  62. 62.

    Granit, R., P. B. Therman and C. M. Wrede: The electrical responses of lightadapted frog's eyes to monochromatic stimuli. J. of Physiol. 89, 239–256 (1937).

    CAS  Article  Google Scholar 

  63. 63.

    Grundfest, H.: The sensibility of the sun-fish, Lepomis, to monochromatic radiation of low intensities. J. gen. Physiol. 15, 307–328 (1932).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    — The spectral sensibility of the sun-fish as evidence for a double visual system. J. gen. Physiol. 15, 507–524 (1932).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Hartline, H. K.: Impulses in single optic nerve fibres of the vertebrate retina. Amer. J. Physiol. 113, 59P (1935).

    Google Scholar 

  66. 66.

    — The response of single optic nerve fibres of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938).

    Google Scholar 

  67. 67.

    — The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye. J. cellul. a. comp. Physiol. 11, 465–478 (1938).

    Article  Google Scholar 

  68. 68.

    — The receptive field of the optic nerve fibres. Amer. J. Physiol. 130, 690–699 (1940).

    Google Scholar 

  69. 69.

    — The effects of spatial summation in the retina on the excitation of the fibers in the optic nerve. Amer. J. Physiol. 130, 700–711 (1940).

    Google Scholar 

  70. 70.

    —, and C. H. Graham: Nerve impulses from single receptors in the eye. J. cellul. a. comp. Physiol. 1, 277–295 (1932).

    Article  Google Scholar 

  71. 71.

    Hartridge, H.: The visual perception of fine detail. Phil. Trans. roy. Soc. Lond. B 1947, No. 592.

  72. 72.

    Hecht, S.: The retinal processes concerned with visual acuity and colour vision. Howe Lab. Ophthalm. Bull. 1931, No 4.

  73. 73.

    —, S. Shlaer and M. H. Pirenne: Energy, quanta and vision. J. gen. Physiol. 25, 819–840 (1942).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Hosoya, Y., T. Okita and T. Akune: Über die lichtempfindliche Substanz in der Zapfennetzhaut. Tohoku J. exper. Med. 34, 532–541 (1938).

    CAS  Article  Google Scholar 

  75. 75.

    Judd, D. B.: Standard response functions for protanopic and deuteranopic vision. J. Res. nat. Bur. Standards 33, 407–437 (1944).

    Article  Google Scholar 

  76. 76.

    Karpe, G.: The basis of clinical electroretinography. Acta ophthalm. (Kobenh.) Suppl. 24, 1–118 (1945).

    Google Scholar 

  77. 77.

    — Apparatus and method for clinical recording of the electroretinogram. Documenta ophthalm. 2, 268–276 (1948).

    CAS  Google Scholar 

  78. 78.

    — Early diagnosis of Siderosis retinae by the use of electroretinography. Documenta ophthalm. 2, 277–296 (1948).

    CAS  Google Scholar 

  79. 79.

    —, and K. Tansley: The relationship between the change in the electroretinogram and the subjective dark-adaptation curve. J. of Physiol. 107, 272–279 (1947).

    Article  Google Scholar 

  80. 80.

    Krause, A. C., and A. E. Sidwell: The absorption spectra of visual purple and its photodecomposition products. Amer. J. Physiol. 121, 215–223 (1938).

    CAS  Google Scholar 

  81. 81.

    Kravkov, S. V., and L. P. Galochkina: Colour vision as affected by electrotonus, C. r. Acad. Sci. URSS. 48, No. 1 (1945).

    Google Scholar 

  82. 82.

    Kries, J. v.: Die Gesichtsempfindungen. In Nagels Handbuch der Physiologie, Bd. 3, S. 109–282. 1904.

  83. 83.

    Kühne, W., und H. Sewall: Zur Physiologie des Sehepithels, insbesondere der Fische. Unters. Physiol. Inst. Univ. Heidelbg 3, 221–277 (1879–80).

    Google Scholar 

  84. 84.

    König, A.: Gesammelte Abhandlungen zur Physiologischen Optik, Leipzig 1903.

  85. 85.

    Lloyd, D. P. C.: The interaction of antidromic and orthodromic volleys in a segmental spinal motor nucleus. J. of Neurophysiol. 6, 143–152 (1943).

    Google Scholar 

  86. 86.

    Loeb, J.: Forced movements, tropisms, and animal conduct. Monogr. on Exper. Biol. Philadelphia a. London: Lippincott Co. 1918.

    Book  Google Scholar 

  87. 87.

    Lorente de No, R.: Transmission of impulses through cranial motor nuclei. J. of Neurophysiol. 2, 402–464 (1939).

    Google Scholar 

  88. 88.

    Lythgoe, R. J.: The absorption spectra of visual purple and of indicator yellow. J. of Physiol. 89, 331–358 (1937).

    CAS  Article  Google Scholar 

  89. 89.

    —, and J. P. Quilliam: The relation of transient orange to visual purple and indicator yellow. J. of Physiol. 94, 399–410 (1938).

    CAS  Article  Google Scholar 

  90. 90.

    Monnier, M.: L'Electroretinogramme de l'homme. J. Electroenc. a. Clin. Neurophysiol. 1, 87–108 (1949).

    CAS  Article  Google Scholar 

  91. 91.

    Morton, R. A.: Chemical aspects of the visual process. Nature (Lond.) 153, 69–71. (1944).

    CAS  Article  Google Scholar 

  92. 92.

    —, and T. W. Goodwin: Preparation of retinene in vitro. Nature (Lond.) 153, 405–406 (1944).

    CAS  Article  Google Scholar 

  93. 93.

    Motokawa, K.: Das Elektroretinogramm des Menschen und seine Beziehung zur Unterschiedsschwelle der Lichtempfindlichkeit und zur Sehschärfe. Jap. J. med. Sci., Biophysics 8, 135–147 (1942).

    Google Scholar 

  94. 94.

    — Die Abhängigkeit des Aktionsstroms der menschlichen Netzhaut von Reizintensität und Gesichtsfeldgröße. Tohoku. J. exper. Med. 43, 371–382 (1942).

    Article  Google Scholar 

  95. 95.

    —, und K. Mita: Über eine einfachte Untersuchungsmethode und Eigenschaften der Aktionsströme der Netzhaut des Menschen. Tohoku J. exper. Med. 42, 114–133 (1942).

    Article  Google Scholar 

  96. 96.

    —, und T. Mita: Das Elektroretinogramm des Menschen und die Gesichtswahrnehmung in Abhängigkeit von der Intensität und Farbe der Reizlichter. Jap. J. med. Sci., Biophysics 9, 23–35 (1943).

    Google Scholar 

  97. 97.

    — Die Helligkeitsverteilung im Dispersionsspektrum und die Aktionsströme der menschlichen Netzhaut. Tohoku J. exper. Med. 48, 267–283 (1945).

    Article  Google Scholar 

  98. 98.

    Müller, G. E.: Über die galvanischen Gesichtsempfindungen Z. Psychol. 14, 329–374 (1897).

    Google Scholar 

  99. 99.

    Parinaud, H.: La vision. E'tude physiologique. Paris 1898.

  100. 100.

    Parry, D. A.: The function of the insect ocellus. J. of exper. Biol. 24, 211–219 (1947).

    CAS  Google Scholar 

  101. 101.

    Polyak, S.: Minute structure of the retina in monkeys and in apes. Arch. of Ophthalm. 15, 477–519 (1936).

    Article  Google Scholar 

  102. 102.

    Polyak, S.: The retina. Univ. Chicago Press 1941.

  103. 103.

    Purkinje, J. E.: Beobachtungen und Versuche zur Physiologie der Sinne. Beiträge zur Kenntnis des Sehens in subjektiver Hinsicht. II. Prag 1823.

  104. 104.

    Ramon y Cajal, S.: Die Retina der Wirbeltiere. Wiesbaden 1894.

  105. 105.

    Ramon y Cajal, S.: La rétine des vertébrés. Trav. Labor Rech. biol. Univ. Madr., Suppl. 28 (1933).

  106. 106.

    Renqvist, Y.: Über die photoelektrische Reaktion des Froschauges. Skand. Arch. Physiol. (Berl. u. Lpz.) 45, 95–131 (1924).

    Article  Google Scholar 

  107. 107.

    Renshaw, B.: Influence of the discharge of motoneurons upon excitation of neighboring motoneurons. J. of Neurophysiol 4, 167–183 (1941).

    Google Scholar 

  108. 108.

    — Effects of presynaptic volleys on spread of impulses over the some of the motoneuron. J. of Neurophysiol 5, 235–243 (1942).

    Google Scholar 

  109. 109.

    — Central effects of centripetal impulses in axons of spinal ventral roots. J. of Neurophysiol. 9, 191–204 (1946).

    CAS  Google Scholar 

  110. 110.

    Saito, Z.: Isolierung der Stäbchenaußenglieder und spektrale Untersuchung des daraus hergestellten Sehpurpurextraktes. Tohoku J. exper. Med. 32, 432–446 (1938).

    CAS  Article  Google Scholar 

  111. 111.

    Schaefer, H.: Elektrophysiologie, Bd. II. Wien: Franz Deuticke 1942.

    Google Scholar 

  112. 112.

    Schultze, M.: Die Retina. In Strickers Handbuch der Lehre von den Geweben, Bd. 2, S. 977–1034. 1871.

  113. 113.

    Sherrington, C. S.: The integrative action of the nervous system. Oxford: Univ. Press 1906.

    Google Scholar 

  114. 114.

    Shlaer, S. A.: A photoelectric transmission spectrophotometer for measurements of photosensitive solutions. J. opt. Soc. Amer. 28, 18 (1937).

    Article  Google Scholar 

  115. 115.

    Skoglund, C. R.: Reciprocal effects due to stimulation of the spinal cord by constant currents of opposite direction. Nature (Lond.) 158 131 (1946).

    CAS  Article  Google Scholar 

  116. 116.

    — Reciprocal effects due to stimulation of the spinal cord by currents of opposite direction. Acta physiol. scand. (Stockh.) 14, Suppl. 47, 1 (1947).

    CAS  Google Scholar 

  117. 117.

    — Reciprocal effects evoked by stimulation of the descending motor tracts with currents of opposite direction. Acta physiol. scand (Stockh.) 14, Suppl. 47, 2 (1947).

    Google Scholar 

  118. 118.

    Stiles, W. S.: The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proc. roy. Soc. Lond. B 127, 64–105 (1939).

    Article  Google Scholar 

  119. 119.

    Stiles, W. S.: Separation of the ‘blue’ and ‘green’ mechanisms of foveal vision by measurements of increment thresholds. Proc. roy. Soc. Lond. B 133, 418–434 (1946).

    Article  Google Scholar 

  120. 120.

    Studnitz, G. v.: Weitere Studien an der Zapfensubstanz. Pflügers Arch. 239, 515–525 (1937).

    Article  Google Scholar 

  121. 121.

    -: Physiologie des Sehens. Leipzig: Akademische Verlagsgesellschaft 1940.

    Google Scholar 

  122. 122.

    Thomson, L. C.: The effect of change of brightness level upon the foveal luminosity curve measured with small fields. J. of Physiol. 106, 368–377 (1947).

    CAS  Article  Google Scholar 

  123. 123.

    — Intensity discrimination of the central fovea measured with small fields. J. of Physiol. 108, 78–91 (1949).

    CAS  Article  Google Scholar 

  124. 124.

    Trendelenburg, W.: Quantitative Untersuchungen über die Bleichung des Sehpurpurs in monochromatischem Licht. Z. Psychol. usw. 37, 1–55 (1904).

    Google Scholar 

  125. 125.

    Wald, G.: Carotenoids and the visual cycle. J. gen. Physiol. 19, 351–371 (1935).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    — Photo-labile pigments of the chicken retina. Nature (Lond.) 140, 545 (1937).

    CAS  Article  Google Scholar 

  127. 127.

    — On rhodopsin in solution. J. gen. Physiol. 21, 795–832 (1938).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    — On the distribution of vitamins A1 and A2. J. gen. Physiol. 22, 391–415 (1939).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    — The photoreceptor function of the carotenoids and vitamins A, vitamins and hormones. New York: Academic Press Inc. 1943.

    Google Scholar 

  130. 130.

    — The synthesis from vitamin A1 of “retinene1” and of a new 545 mμ chromogen yielding light-sensitive product. J. gen. Physiol. 31, 489–504 (1948).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Waller, A. D.: On the “Blaze-currents” of the frog's eyeball. Proc. roy. Soc. Lond. 67, 439–441 (1900).

    Article  Google Scholar 

  132. 132.

    — On the “Blaze zurrents” of the frog's eyeball. Phil. Trans. roy. Soc. Lond., III. s. 194, 183–233 (1901).

    Article  Google Scholar 

  133. 133.

    Walls, G. L.: The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science. Michigan 1942.

    Book  Google Scholar 

  134. 134.

    Walters, H. V.: Some experiments on the trichromatic theory of vision. Proc. roy. Soc. Lond. B 131, 27–50 (1942).

    Article  Google Scholar 

  135. 135.

    — The spectral sensitivity of the fovea and extrafovea in the Purkinje range. Proc. roy. Soc. Lond. B 131, 340–361 (1943).

    Article  Google Scholar 

  136. 136.

    Wilska, A.: Aktionspotentialänderungen, einzelner Netzhautelemente des Frosches. Acta Soc. Medic. fenn. Duodecim A 12, 50–62 (1939).

    Google Scholar 

  137. 137.

    — Aktionspotentialentladungen einzelner Netzhautelemente der Katze. Acta Soc. Medic. fenn. Duodecim A 12, 63–71 (1939).

    Google Scholar 

  138. 138.

    Wilska, A., and H. K. Hartline: The origin of “off-response” in the optic pathway. Amer. J. Physiol. 133, 491P (1941).

    Google Scholar 

  139. 139.

    Wright, W. D.: The foveal light adaptation process. Proc. roy. Soc. Lond. B 122, 220–245 (1937).

    Article  Google Scholar 

  140. 140.

    — Researches on normal and defective colour vision, London: Kimpton 1946.

    Google Scholar 

  141. 141.

    Wright, W. D., and R. Granit: On the correlation of some sensory and physiological phenomena of vision. Brit. J. Ophthalm. Suppl. 9 (1938).

Download references

Author information

Affiliations

Authors

Additional information

With 28 Figures.

The Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm. — Paper received June 20 1949

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Granit, R. The organization of the vertebrate retinal elements. Ergebnisse der Physiologie und exper. Pharmakologie 46, 31–70 (1950). https://doi.org/10.1007/BF02259872

Download citation

Keywords

  • Selective Adaptation
  • Impulse Frequency
  • Acta Physiol
  • Light Threshold
  • Retinal Element