Skip to main content
Log in

Kinetic optimization of capillary supercritical fluid chromatography using carbon dioxide as the mobile phase

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Use of supercritical fluids or compressed gases in capillary chromatography can result in the efficient separation of high-boiling solutes at relatively low temperatures. The chromatographic system is kept under high-pressure conditions from the point of sampling to detection to avoid the problems of large pressure gradients across the column. Expressions are given here that describe the theoretical performance of such a system. Capillary colums should deliver 106 theoretical plates under reasonable operating conditions. Consideration is given to the time of analysis and the detection requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Klesper, A. H. Corwin andD. A. Turner, J. Org. Chem.27, 700 (1962).

    Google Scholar 

  2. M. N. Myers andJ. C. Giddings, Sepn. Sci.1, 761 (1966).

    Google Scholar 

  3. S. T. Sie, W. Van Beersum andG. W. A. Rijnders, Sepn. Sci.1, 459 (1966).

    Google Scholar 

  4. S. T. Sie andG. W. A. Rijnders, Anal. Chim. Acta38, 31 (1967).

    Article  Google Scholar 

  5. T. H. Gouw andR. e. Jentoft, J. Chromatogr.68, 303 (1972).

    Article  Google Scholar 

  6. T. H. Gouw andR. E. Jentoft, “Practical Aspects in Supercritical Fluid Chromatography”, in: Advances in Chromatography, Vol. 13,J. C. Gidding, E. Grushka, R. A. Keller andJ. Cazes (eds.), Marcel Dekker, New York, 1975; p. 1.

    Google Scholar 

  7. E. Klesper, Angew. Chem. Int. Ed. Engl.17, 738 (1978).

    Article  Google Scholar 

  8. K. Zosel (Studiengesellschaft Kohle), DBP 2,005,293 (Priority: Feb. 5, 1970).

  9. K. Zosel, Angew. Chem. Int. Ed. Engl.17, 702 (1978).

    Article  Google Scholar 

  10. P. Hubert andO. G. Vitzthum, Angew. Chem. Int. Ed. Eng.17, 710 (1978).

    Article  Google Scholar 

  11. M. Novotny, S. R. Springston, P. A. Peaden, J. C. Fjeldsted andM. L. Lee, Anal. Chem.53, 407A (1981).

    Google Scholar 

  12. T. Tsuda andM. Novotny, Anal. Chem.50, 632 (1978).

    Article  Google Scholar 

  13. T. Tsuda, K. Hibi, T. Nakanishi, T. Takeuchi andD. Ishii, J. Chromatogr.158, 227 (1978).

    Google Scholar 

  14. T. Tsuda andG. Nakagawa, J. Chromatogr.199, 249 (1980).

    Article  Google Scholar 

  15. J. C. Giddings, Anal. Chem.36, 1890 (1964).

    Article  Google Scholar 

  16. M. Novotny, W. Bertsch andA. Zlatkis, J. Chromatogr.61, 17 (1971).

    Article  Google Scholar 

  17. G. Guiochon, Anal. Chem.50, 1812 (1978).

    Article  Google Scholar 

  18. G. Guiochon, J. Chromatogr.185, 3 (1979).

    Article  Google Scholar 

  19. J. H. Knox andM. T. Gilbert, J. Chromatogr.186, 405 (1979).

    Article  Google Scholar 

  20. U. van Wasen andG. M. Schneider, Chromatographia8, 274 (1975).

    Google Scholar 

  21. R. E. Jentoft andT. H. Gouw, Anal. Chem.48, 2195 (1976).

    Article  PubMed  Google Scholar 

  22. S. T. Sie andG. W. A. Rinjnders, Sepn. Sci.2, 729 (1967).

    Google Scholar 

  23. M. J. E. Golay, Anal. Chem.29, 928 (1957).

    Article  Google Scholar 

  24. J. C. Gidding, Dynamics of Chromatography, Marcel Dekker, Inc., New York, 1965, p. 279.

    Google Scholar 

  25. J. S. Duffield andM. J. Harris, Ber. Bunsenges. Physik. Chem.80, 157 (1976).

    Google Scholar 

  26. W. C. Robb andH. G. Drickamer, J. Chem. Phys.19, 1504 (1951).

    Article  Google Scholar 

  27. G. M. Schneider, Angew. Chem. Int. Ed. Engl.17, 716 (1978).

    Article  Google Scholar 

  28. D. H. Desty, A. Goldup, G. R. Luckhurst andW. T. Swanton, in:M. van Swaay (Ed.), Gas Chromatography 1962, Butterworths, London, 1962, p. 67.

    Google Scholar 

  29. J. A. Graham andL. B. Rogers, J. Chromatogr. Sci.18, 75 (1980).

    Google Scholar 

  30. D. Bartmann andG. M. Schneider, J. Chromatogr.83, 135 (1973).

    Article  Google Scholar 

  31. J. Kestin, J. H. Whitelaw andT. F. Zien, Physica30, 161 (1964).

    Article  Google Scholar 

  32. D. H. Desty andA. Goldup, in: R. P. W. Scott (Ed.), Gas Chromatography 1960, Butterworths, London, 1960, p. 162.

    Google Scholar 

  33. C. E. Reese andR. P. W. Scott, J. Chromatogr. Sci.18, 479 (1980).

    Google Scholar 

  34. K. Grob andG. Grob, J. Chromatogr. Sci.7, 584 (1969).

    Google Scholar 

  35. K. D. Bartle, L. Bergstedt, M. Novotny andG. Widmark, J. Chromatogr.45, 256 (1969).

    Article  PubMed  Google Scholar 

  36. M. Novotny, M. L. Lee andK. D. Bartle, Chromatographia7, 333 (1974).

    Google Scholar 

  37. K. Grob andK. Grob Jr., J. Chromatogr.94, 53 (1974).

    Article  Google Scholar 

  38. R. E. Jentoft andT. H. Gouw, J. Chromatogr. Sci.8, 138 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Springston, S.R., Novotny, M. Kinetic optimization of capillary supercritical fluid chromatography using carbon dioxide as the mobile phase. Chromatographia 14, 679–684 (1981). https://doi.org/10.1007/BF02259454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259454

Key Words

Navigation