Experimental Brain Research

, Volume 88, Issue 1, pp 187–192 | Cite as

Medial vestibular nucleus in the guinea-pig: NMDA-induced oscillations

  • M. Serafin
  • A. Khateb
  • C. de Waele
  • P. P. Vidal
  • M. Mühlethaler
Article

Summary

We have recently shown in vivo that N-Methyl-D-Aspartate (NMDA) receptors are present in the guinea-pig vestibular complex and demonstrated that they are involved in the regulation of the resting discharge of vestibular neurones. A parallel in vitro study has identified in the guinea-pig medial vestibular nuclei (MVN) two main neuronal cell types, A and B MVNn, differing by their intrinsic membrane properties. One subtype of B MVNn was further characterized by the presence of a low threshold calcium spike (LTS). The present study investigated in vitro the responses of these different cell types to NMDA. Both A and B MVNn were depolarized by NMDA, which also induced a decrease in membrane resistance and an increase in the spontaneous firing rate. These effects could be blocked by D-AP5, a specific antagonist of NMDA receptors. Following a 10–30 mV hyperpolarization, a long-lasting oscillatory behavior could be induced in presence of NMDA. These oscillations were however restricted to the subtype of B MVNn without LTS. The NMDA-induced oscillations were tetrodotoxine-resistant, but could be eliminated by D-AP5 or by replacing sodium with choline. Functional implications of this oscillatory behavior are discussed.

Key words

Low threshold spike A-like conductance Bursts In vitro Excitatory amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader CR, Bernheim L, Bertrand D (1985) Sodium-activated potassium current in avian neurones. Nature 317:540–542CrossRefPubMedGoogle Scholar
  2. Berthoz A, Droulez J, Vidal PP, Yoshida K (1989) Neural correlate of horizontal VOR cancellation during rapid eye movement in the cat. J Physiol (London) 419:717–751PubMedGoogle Scholar
  3. Cochran SL, Kasik P, Precht W (1987) Pharmacological aspects of excitatory synaptic transmission to second-order vestibular neurons in the frog. Synapse 1:102–123CrossRefPubMedGoogle Scholar
  4. Collewijn H (1979) Adaptation of optokinetic and vestibulo-ocular reflexes to modified visual input in the rabbit. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 273–280Google Scholar
  5. Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain: focus on NMDA receptors and Hebb-type synaptic plasticity. Trends Neurosci 10:263–264CrossRefGoogle Scholar
  6. Curthoys IS (1982) The response of primary horizontal semicircular canal neurons in the rat guinea pig to angular acceleration. Exp Brain Res 47:286–294PubMedGoogle Scholar
  7. Darlington CL, Smith PF, Hubbard JI (1989) Neuronal activity in the guinea pig medial vestibular nucleus in vitro following chronic unilateral labyrinthectomy. Neurosci Lett 105:143–148CrossRefPubMedGoogle Scholar
  8. de Waele C, Escudero M, Berthoz A, Vidal PP (1989a) Reflejo vestibulo-ocular en el cobaya: despustas a diferentes lesionnes III. In: Congreso National de la Sociedad Espanola de Neurociencia, Seville, 91.29Google Scholar
  9. de Waele C, Graf W, Josset P, Vidal PP (1989b) A radiological analysis of the postural syndromes following hemilabyrinthectomy and selective canal and otolith lesions in the guinea pig. Exp Brain Res 77:166–182CrossRefPubMedGoogle Scholar
  10. de Waele C, Vibert N, Baudrimont M, Vidal PP (1990) NMDA receptors contribute to the resting discharge of vestibular neurons in the normal and hemilabyrinthectomized guinea pig. Exp Brain Res 81:125–133CrossRefPubMedGoogle Scholar
  11. Demêmes D, Raymond J, Sans A (1984) Selective retrograde labeling of neurons of the cat vestibular ganglion with (3H)D-aspartate. Brain Res 304:188–191PubMedGoogle Scholar
  12. Doi K, Tsumoto T, Matsunaga T (1990) Actions of excitatory amino acid antagonists on synaptic inputs to the rat medial vestibular nucleus: an electrophysiological study in vitro. Exp Brain Res 82:254–262PubMedGoogle Scholar
  13. Escudero M, de Waele C, Berthoz A, Vidal PP (1989) Horizontal vestibulo-ocular and vestibulo-collic reflexes in the normal and hemilabyrinthectomized guinea pig. ENA 12:6.8Google Scholar
  14. Ezure K, Graf W (1984a) A quantative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral and frontal-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–93CrossRefPubMedGoogle Scholar
  15. Ezure E, Graf W (1984b) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral and frontal-eyed animals. II. Neuronal networks underlying vestibulo-oculomotor coordination. Neuroscience 12:95–109CrossRefPubMedGoogle Scholar
  16. Flatman JA, Schwindt PC, Crill WE (1986) The induction and modification of voltage-sensitive responses in cat neocortical neurons by N-methyl-D-aspartate. Brain Res 363:62–77PubMedGoogle Scholar
  17. Headley PM, Grillner S (1990) Excitatory amino acids and synaptic transmission: the evidence for a physiological function. TIPS 11:205–211PubMedGoogle Scholar
  18. Herrling PL, Morris R, Salt TE (1983) Effects of excitatory amino acids and their antagonists on membrane and action potentials of cat caudate neurons. J Physiol (London) 339:207–222PubMedGoogle Scholar
  19. Iwamoto Y, Kitama T, Yoshida K (1990a) Vertical eye movement-related secondary vestibular neurons ascending in medial longitudinal fasciculus in the cat. I. Firing properties and projection pathways. J Neurophysiol 63:902–917PubMedGoogle Scholar
  20. Iwamoto Y, Kitama T, Yoshida K (1990b) Vertical eye movement-related secondary vestibular neurons ascending in medial longitudinal fasciculus in cat. II. Direct connections with extraocular motoneurons. J Neurophysiol 63:918–935PubMedGoogle Scholar
  21. Knöpfel T (1987) Evidence for N-methyl-D-aspartic acid receptor mediated modulation of the commissural input to central vestibular neurons of the frog. Brain Res 426:212–224CrossRefPubMedGoogle Scholar
  22. Knöpfel T, Dieringer N (1988a) Lesion-induced vestibular plasticity in the frog: are N-methyl-D-aspartate receptors involved. Exp Brain Res 72:129–134CrossRefPubMedGoogle Scholar
  23. Knöpfel T, Dieringer N (1988b) The role of NMDA and non-NMDA receptors in the central vestibular synaptic transmission. Adv Otorhinolaryngol 42:229–233PubMedGoogle Scholar
  24. Larson J, Wong D, Lynch G (1986) Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res 368:345–350Google Scholar
  25. Lewis MR, Phelan D, Shinnick-Gallagher P, Gallagher JP (1989) Primary afferent excitatory transmission recorded intracellularly in vitro from rat medial vestibular neurons. Synapse 3:149–153CrossRefPubMedGoogle Scholar
  26. Llinás R (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664PubMedGoogle Scholar
  27. Mintz I (1987) Analyse in vitro des propriétés membranaires actives des motoneurones de tortue et de leur contribution aux oscillations induites par l'acide N-Methyl-D-Aspartique et les agonistes muscariniques. In Université Paris 6 (ed) PhD ThesisGoogle Scholar
  28. Nicoll RA (1988) The coupling of neurotransmitters receptors to ion channels in the brain. Science 241:545–551PubMedGoogle Scholar
  29. Orlovsky GN (1972) Activity of vestibulospinal neurons during locomotion. Brain Res 46:85–98CrossRefPubMedGoogle Scholar
  30. Raymond J, Nieoullon A, Demêmes D, Sans A (1984) Evidence for glutamate as a neurotransmitter in the cat vestibular nerve: radioautographic and biochemical studies. Exp Brain Res 56:523–531PubMedGoogle Scholar
  31. Serafin M, Khateb A, de Waele C, Vidal PP, Mühlethaler M (1990) Low threshold calcium spikes in medial vestibular nuclei neurones in vitro: a role in the generation of the vestibular nystagmus quick phase in vivo?. Exp Brain Res 82:187–191PubMedGoogle Scholar
  32. Serafin M, de Waele C, Khateb A, Vidal PP, Mühlethaler M (1991a) Medial vestibular nucleus in the guinea-pig: I. Intrinsic membrane properties in brainstem slices. Exp Brain Res 84:417–425PubMedGoogle Scholar
  33. Serafin M, de Waele C, Khateb A, Vidal PP, Mühlethaler M (1991) Medial vestibular nucleus in the guinea-pig. II. Ionic basis of the intrinsic membrane properties in brainstem slices. Exp Brain Res 84:426–433PubMedGoogle Scholar
  34. Serafin M, Khateb A, de Waele C, Vidal PP, Mühlethaler M (1991c) Oscillatory activity induced by NMDA and apamin in the medial vestibular nuclei. Experientia 47:A11Google Scholar
  35. Shimazu H, Precht W (1965) Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J Neurophysiol 28:991–1013PubMedGoogle Scholar
  36. Smith PF, Curthoys IS (1988a) Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 444:295–307PubMedGoogle Scholar
  37. Smith PF, Curthoys IS (1988b) Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res 444:308–319CrossRefPubMedGoogle Scholar
  38. Smith PF, Darlington CL (1988) The NMDA antagonists MK 801 and CPP disrupt compensation for unilateral labyrinthectomy in the guinea pig. Neurosci Lett 94:309–313PubMedGoogle Scholar
  39. Smith PF, Darlington CL, Hubbard JI (1990) Evidence that NMDA receptors contribute to synaptic function in the guinea pig medial vestibular nucleus. Brain Res 513:149–151PubMedGoogle Scholar
  40. Stone TW, Burton NR (1988) NMDA receptors and ligands in the vertebrate CNS. Prog Neurobiol 30:333–368CrossRefPubMedGoogle Scholar
  41. Touati J, Raymond J, Demêmes D (1989) Quantitative autoradiographic characterization of L-[3H] glutamate binding sites in rat vestibular nuclei. Exp Brain Res 76:646–650CrossRefPubMedGoogle Scholar
  42. Wallén P, Grillner S (1987) N-methyl-D-aspartate receptor induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey. J Neurosci 7:2745–2755PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Serafin
    • 1
  • A. Khateb
    • 1
  • C. de Waele
    • 2
  • P. P. Vidal
    • 2
  • M. Mühlethaler
    • 1
  1. 1.Département de PhysiologieCMUGenève 4Switzerland
  2. 2.Laboratoire de Physiologie NeurosensorielleCNRSParis Cedex 06France

Personalised recommendations