Skip to main content
Log in

The association of heterotrimeric GTP-binding protein (Go) with microtubules

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

The heterotrimeric GTP-binding regulatory proteins (G proteins) play an important role in the regulation of membrane signal transduction. Recently, we identified the association of Go protein with mitotic spindles. Here we have investigated the relationship between Go protein and microtubules. We used temperature-dependent reversible assembly and taxol methods to purify microtubules from bovine brains. Goα and Gβ proteins were identified in the microtubular fraction by both methods. The Goα subunit in the microtubular fraction could be ADP ribosylated by pertussis toxin. Co-immunoprecipitation data also revealed that Go protein can interact with microtubules. Exogenous Go protein could be incorporated into the assembled microtubular fraction, and 5 µg/ml (60 nM) of Go protein inhibited 40% of microtubule assembly. Western blot analysis of Goα-1 and Goα-2 in microtubular fractions showed that only Goα-1 is associated with microtubules. We conclude that the Goα-1βγ proteins are associated with microtubules and may play some role in regulating the assembly and disassembly of microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: A conserved switch for diverse cell function. Nature 348:125–132;1990.

    Google Scholar 

  2. Brandt DR, Ross EM. GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. J Biol Chem 260:266–272;1985.

    Google Scholar 

  3. Brugg B, Matus A. Phosphorylation determines the binding of microtubule-associated protein 2 (MAP2) to microtubules in living cells. J Cell Biol 114:735–743;1991.

    Google Scholar 

  4. Cali JJ, Balcueva EA, Rybalkin I, Robishaw JD. Selective tissue distribution of G protein γ subunits, including a new form of the γ subunits identified by cDNA cloning. J Biol Chem 267:24023–24027;1992.

    Google Scholar 

  5. Correas I, Diaz NJ, Avila J. Microtubule-associated protein tau is phosphorylated by protein kinase C on its tubulin-binding domain. J Biol Chem 267:15721–115728;1992.

    Google Scholar 

  6. Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR. Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits. Nature 356:159–161;1992.

    Google Scholar 

  7. Florio VA, Sternweis PC. Reconstitution of the resolved muscarnic cholinergic proteins. J Biol Chem 160:3477–3483;1985.

    Google Scholar 

  8. Gelfand VI, Bershadsky AD. Microtubule dynamic: Mechanism, regulation, and function. Annu Rev Cell Biol 7:93–116;1991.

    Google Scholar 

  9. Gilman AC. G proteins: Transducers of receptor-generated signals. Annu Rev Biochem 56:615–649;1987.

    Google Scholar 

  10. Higashijima T, Ferduson KM, Sternweis PC, Smigel MD, Gilman AG. Effects of Mg2+ and the βγ-subunit complex on the interactions of guanine nucleotides with G proteins. J Biol Chem 262:762–766;1987.

    Google Scholar 

  11. Horio T, Hotani H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607;1986.

    Google Scholar 

  12. Hsu W, Rodulph U, Sanford J, Bertrand P, Olate J, Nelson C, Mors LG, Boyd AE, Codina J, Birnbaumer L. Molecular cloning of a novel splice variant of the α subunit of the mammalian Go protein. J Biol Chem 265:11220–11226;1990.

    Google Scholar 

  13. Jelsema CL, Axelrod J. Stimulation of phospholipase A2 activity in bovine rod outer segments by the subunits of transducin and its inhibition by the alpha subunit. Proc Natl Acad Sci USA 84:3623–3627;1987.

    Google Scholar 

  14. Katz A, Wu D, Simon MI. Subunits βγ of heterotrimeric G protein activate β2 isoform of phospholipase C. Nature 360:686–689;1992.

    Google Scholar 

  15. Kaziro Y, Itoh H, Kazasa T, Hakafuku M, Satoh T. Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60:349–400;1991.

    Google Scholar 

  16. Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE. G-protein βγ subunits activate the cardiac muscarinic K-channel via phospholipase A2. Nature 337:557–560;1989.

    Google Scholar 

  17. Kopp GS, Woolalis MJ. ADP-ribosylation of G proteins with pertussis toxin. Methods Enzymol 195:257–266;1991.

    Google Scholar 

  18. Li Q, Suprenant KA. Molecular characterization of the 77 kDa echinoderm microtubule-associated protein. J Biol Chem 269:31777–31784;1994.

    Google Scholar 

  19. Lin CT, Wu HC, Cheng HF, Chang JT, Chang KJ. Identification of β subunit of GTP-binding regulatory protein in mitotic spindle. Lab Invest 67:770–778;1992.

    Google Scholar 

  20. Lindwall G, Cole RD. Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259:5301–5305;1984.

    Google Scholar 

  21. Mattera R, Codina J, Sekura RD, Birnbaumer L. Guanosine 5′-o-(3-thiotriphosphate) reduces ADP-ribosylation of the inhibitory guanine nucleotide-binding regulatory protein of adenylyl cyclase (Ni) by pertussis toxin without causing dissociation of the subunits of Ni. J Biol Chem 262:11247–11251;1987.

    Google Scholar 

  22. Mclaughin SK, Mckinnon PJ, Margolskel RF. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357:563–569;1992.

    Google Scholar 

  23. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature 312:237–242;1984.

    Google Scholar 

  24. Morishita R, Nakayama H, Isobe T, Matsuda T, Hashimoto Y, Okano T, Fukada Y, Mizuno K, Ohno S, Kozawa O, Kato K, Asano T. Primary structure of a γ subunit of G protein, γ12, and its phosphorylation by protein kinase C. J Biol Chem 270:29469–29475;1995.

    Google Scholar 

  25. Neer EJ, Clapham DE. Roles of G protein subunits in transmembrane signaling. Nature 33:129–134;1988.

    Google Scholar 

  26. Neer EJ, Lok JM, Wolf LG. Purification and properties of the inhibitory guanine nucleotide regulatory unit of brain adenylate cyclase. J Biol Chem 259:14222–14229;1984.

    Google Scholar 

  27. Neer EJ. Heterotrimeric G protein: Organizers of transmembrane signals. Cell 80:249–257;1995.

    Google Scholar 

  28. Northup JK, Smigel H, Sternweis PC, Gilman AG. The subunits of the stimulatory regulatory component of adenylate cyclase. J Biol Chem 258:11369–11376;1983.

    Google Scholar 

  29. Olmsted JB. Microtubule-associated proteins. Annu Rev Cell Biol 2:421–457;1986.

    Google Scholar 

  30. Ong OC, Yamane HK, Phan KB, Fong HK, Bok D, Rehwa H, Lee RH, Fung BK. Molecular cloning and characterization of the G protein γ subunit of cone photoreceptors. J Biol Chem 270:8495–8500;1995.

    Google Scholar 

  31. Peraldi S, Nguyen B, Brabet P, Homburger V, Rouot B, Toutant M, Bouille C, Assenmacher I, Bockaert J, Gabrion J. Apical localization of the alpha subunit of GTP-binding protein Go in choroidal and ciliated ependymocytes. J Neurosci 9:806–814;1989.

    Google Scholar 

  32. Popova JS, Garrison JC, Rhee SG, Rasenick MM. Tubulin, Gq and phosphatidylinositol 4,5-bisphosphate interact to regulate phospholipase Cβ1 signaling. J Biol Chem 272:6760–6765;1997.

    Google Scholar 

  33. Ray K, Kunsch C, Bonner LM, Robishaw JD. Isolation of cDNA clones encoding eight different human G protein γ subunits, including three novel forms designated the γ4, γ10, and γ11 subunits. J Biol Chem 270:21765–21771;1995.

    Google Scholar 

  34. Roychowdhury S, Panda D, Wilson L, Rasenick M. G protein α subunits activate tubulin GTPase and modulate microtubule polymerization dynamics. J Biol Chem 274:13485–13490;1999.

    Google Scholar 

  35. Roychowdhury S, Rasenick MM. G protein β1γ2 subunits promote microtubule assembly. J Biol Chem 272:31576–31581;1997.

    Google Scholar 

  36. Ryba NJ, Tirindelli RA. Novel GTP-binding protein γ-subunit, Gγ8, is expressed during neurogenesis in the olfactory and vomeronasal neuroepithelia. J Biol Chem 270:6757–6767;1995.

    Google Scholar 

  37. Simon MI, Strathmann MP, Gautam N. Diversity of G protein in signal transduction. Science 252:802–808;1991.

    Google Scholar 

  38. Sternweis PC, Northup JK, Smioge MD, Gilman AG. The regulatory component of adenylate cyclase, purification and properties. J Biol Chem 256:11517–11526;1981.

    Google Scholar 

  39. Sternweis PC, Robishaw JD. Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain. J Biol Chem 259:13806–13813;1984.

    Google Scholar 

  40. Strathmann M, Wilkie TM, Simon MI. Alternative splicing produces transcripts encoding two dorms of α subunit of GTP binding protein Go. Proc Natl Acad Sci USA 87:6477–6481;1990.

    Google Scholar 

  41. Stryer L, Bourne HR. G proteins: A family of signal transducers. Annu Rev Cell Biol 2:391–419;1986.

    Google Scholar 

  42. Tang WT, Gilman AG. Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503;1991.

    Google Scholar 

  43. Tsukamoto T, Toyama R, Itoh H, Kozasa T, Matsuoka M, Kaziro Y. Structure of human gene and two rat cDNAs encoding the alpha chain of GTP-binding regulatory protein Go: Two different mRNAs are generated by alternative splicing. Proc Natl Acad Sci USA 88:2974–2978;1991.

    Google Scholar 

  44. Vallee RB, Borisy GG. The non-tubulin component of microtubule protein oligomers. J Biol Chem 253:2834–2845;1978.

    Google Scholar 

  45. Vallee RB. A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs). J Cell Biol 92:435–442;1982.

    Google Scholar 

  46. Vallee RB. Purification of brain microtubules and microtubule-associated protein I using taxol. Methods Enzymol 134:104–115;1986.

    Google Scholar 

  47. Vallee RB. Reversible assembly purification of microtubule without assembly-promoting agents and further purification of tubulin, microtubule-associated proteins, and MAP fragments. Methods Enzymol 134:89–104;1986.

    Google Scholar 

  48. Walker RA, O'Brien ET, Pryer NK, Soboerio MF, Voter WA, Erickson HP, Salmon ED. Dynamic instability of individual, MAP-free microtubules analyzed by video light microscopy: Rate constants and transition frequencies. J Cell Biol 107:1437–1448;1988.

    Google Scholar 

  49. Wang N, Rasenick MM. Tubulin-G protein interactions involve microtubule polymerization domains. Biochemistry 30:10957–10965;1991.

    Google Scholar 

  50. Wang N, Yan K, Rasenick MM. Tubulin binds specifically to the signal-transducing protein, Gs alpha and Gi alpha 1. J Biol Chem 265:1239–1242;1990.

    Google Scholar 

  51. Wu HC, Huang PH, Lin CT. G protein beta subunit is closely associated with microtubules. J Cell Biochem 70:553–562;1998.

    Google Scholar 

  52. Wu HC, Lin CT. Association of heterotrimeric GTP binding regulatory protein (Go) with mitosis. Lab Invest 71:175–181;1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HC., Chiu, CY., Huang, PH. et al. The association of heterotrimeric GTP-binding protein (Go) with microtubules. J Biomed Sci 8, 349–358 (2001). https://doi.org/10.1007/BF02258377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02258377

Key Words

Navigation