Skip to main content
Log in

Decreased uptake and binding of11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography

  • Short Communication
  • Published:
Journal of Neural Transmission - Parkinson's Disease and Dementia Section

Summary

Positron emission tomography of the brain following intravenous injection of (+) (R) and (−) (S) N-[11C-methyl]nicotine showed a marked reduced uptake of both isomers, especially the (R) form, in Alzheimer patients as compared to age-matched controls. The significantly larger difference between the uptake values of the (S)- and (R)-enantiomers of11C-nicotine in Azheimer brains may be of diagnostic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abood LG, Grassi S, Costanza M (1983) Binding of optically pure (−)3H-nicotine to rat membranes. FEBS Lett 157: 147–149

    Google Scholar 

  • Aceto MD, Martin BR, Uwaydah IM, May EL, Harris LS, Izazola-Conde C, Dewey WL, Bradshaw TJ, Vinceh WC (1979) Optically pure (+)nicotine from (±)nicotine and biological comparison with (−)nicotine. J Med Chem 22: 174–177

    Google Scholar 

  • Adem A, Singh Jossan S, d'Argy R, Brandt I, Winblad B, Nordberg A (1988) Distribution of nicotinic receptors in human thalamus as visualized by3H-nicotine and3H-acetylcholine receptor autoradiography. J Neural Transm 73: 77–83

    Google Scholar 

  • Adem A, Nordberg A, Singh Jossan S, Sara V, Gillberg PG (1989) Quantitative autoradiography of nicotinic receptors in large cryosection of human brain hemispheres. Neurosci Lett 101: 247–252

    Google Scholar 

  • Appelgren LE, Hansson E, Schmiterlöw CG (1962) The accumulation and metabolism of14C-labelled nicotine in brain of mice and cats. Acta Physiol Scand 56: 249–257

    Google Scholar 

  • Barlow RB, Hamilton JT (1965) The stereospecificity of nicotine. Br J Pharmacol 25: 206–212

    Google Scholar 

  • Copeland JR, Adem A, Jacob III P, Nordberg A (1990) Binding of nicotine and nornicotine enantiomers to nicotinic binding sites of rat cortex. Naunyn Schmiedebergs Arch Pharmacol (submitted)

  • Dewey SL, Bendriem B, MacGregor R, King P, Fowler JS, Christman DR, Schlyer DJ, Wolf AP, Volkow N, Brodie JD (1989) PET studies using11C-cogentin in baboon brain. J Cereb Blood Flow Metab 9: 1-S13

    Google Scholar 

  • Drachman DA (1977) Cognitive function in man. Does the cholinergic system have a special role? Neurology 27: 738–790

    Google Scholar 

  • Drachman DA (1978) Memory, dementia and the cholinergic system. in: Katzman R, Terry RD, Bick KL (eds) Alzheimer's disease: senile dementia and related disorders. Raven Press, New York, pp 141–148

    Google Scholar 

  • Eckernäs S-Å, Aquilonius S-m, Bergström K, Hartvig P, Lindberg B, Lundqvist H, Långström B, Malmborg P, Någren K (1985) The use of positron emission tomography (PET) for the study of central cholinergic mechanisms in primates. IV World Congress of Biological Psychiatry, Philadelphia, Sept 1985. Elsevier

  • Erkinjuntti T, Laaksonen R, Sulkava R, Syrjäälinen R, Palo J (1986) Neuropsychological differentiation between normal aging, Alzheimer's disease and vascular dementia. Acta neurol Scand 74: 393–403

    Google Scholar 

  • Ferris SH, de Leon MJ, Wolf AP, Farkas T, Christman DR, Reisberg B, Fowler JS, MacGregor R, Goldman A, George AE, Rampal S (1980) Positron emission tomography in the study of aging and senile dementia. Neurobiol Aging 1: 127–131

    Google Scholar 

  • Flynn DD, Mash DC (1986) Characterization of L-(3H)-nicotine binding in human cerebral cortex: comparison between Alzheimer's disease and the normal. J Neurochem 47: 1948–1954

    Google Scholar 

  • Folstein M, Folstein S, McHugh P (1975) “Mini-mental-state”. A practical method for grading the cognition state of patients for the clinician. J Psychiatr Res 12: 189–198

    Google Scholar 

  • Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, Di Chiro G (1984) Cortical abnormalities in Alzheimer's disease. Ann Neurol 16: 649–654

    Google Scholar 

  • Frackowiak RSJ, Pozzilli C, Legg NJ, Du Boulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and reutilization in dementia. A clinical and physiological study in oxygen-15 and positron emission tomography. Brain 104: 753–778

    Google Scholar 

  • Gauthier S, Diksic M, Yamamoto L, Tyler J, Feindel W (1985) Positron emission tomography with11C-choline in human subjects. Can J Neurol Sci 12: 214

    Google Scholar 

  • Giacobini E, De Sarno P, Clark B, Mc Ilhany M (1989) The cholinergic receptor system of the human brain: neurochemical and pharmacological aspects in aging and Alzheimer. Prog Brain Res 79: 335–343

    Google Scholar 

  • Gottfries CG (1985) Alzheimer's disease and senile dementia: biochemical characteristics and aspects of treatment. Psychopharmacology 86: 245–252

    Google Scholar 

  • Hardy J, Adolfsson R, Alufuzoff I, Bucht G, Marcusson J, Nyberg P, Perdahl E, Wester P, Winblad B (1985) Transmitter deficits in Alzheimer's disease. Neurochem Int 7: 545–563

    Google Scholar 

  • Hicks CS, MacKay ME, Sinclair DA (1947) The comparative pharmacology of the nornicotines. Aus J Exp Biol Med Sci 25: 363–372

    Google Scholar 

  • Hoelman BL, Gibson RE, Hill TC, Eckelman WC, Albert M, Rebz RC (1985) Muscarinic acetylcholine receptors in Alzheimer's disease. In vivo imaging with iodine123I-labelled-1-quinuclidinyl-4-iodobenzilate and emission tomography. JAMA 254: 3063–3066

    Google Scholar 

  • Långström B, Antoni G, Halldin C, Svärd H, Bergson G (1982) The synthesis of some11C-labelled alkaloids. Chemica Scripta 20: 46–48

    Google Scholar 

  • Långström B, Halldin C, Antoni G, Gullberg P, Malmborg P, Någren K, Rimland A, Svärd H (1987) Synthesis of11C-L and D-methionine. J Nucl Med 28: 1037–1040

    Google Scholar 

  • Martin BR, Aceto MD (1981) Nicotine binding sites and their localization in the central nervous system. Neurosci Biobehav Rev 5: 473–478

    Google Scholar 

  • Martin BR, Hem L, Tripathi HL, Aceto MD, May EL (1983) Relationship of the biodisposition of the stereoisomers of nicotine in the central nervous system to their pharmacological actions. J Pharmacol Exp Ther 226: 157–163

    Google Scholar 

  • Mazière M, Comar D, Marazano C, Berger G (1976) Nicotine-11C: synthesis and distribution kinetics in animals. Eur J Nucl Med 1: 255–258

    Google Scholar 

  • Mazière M, Khalili-Varasteh M, Delforge J, Janier M, Leguludec P, Prenant C, Syrota A (1990) Positron emission tomography and cholinergic mechanisms. Progr Brain Res 33 (in press)

  • Nordberg A, Winblad B (1986) Reduced number of3H-nicotine and3H-acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72: 115–119

    Google Scholar 

  • Nordberg A, Adem A, Hardy J, Winblad B (1988a) Changes in nicotinic receptor subtypes in temporal cortex of Alzheimer brains. Neurosci Lett 86: 317–321

    Google Scholar 

  • Nordberg A, Adem A, Nilsson L, Romanelli L, Zhang X (1988b) Heterogenous cholinergic nicotinic receptors in the CNS. In: Clementi F, Gotti C, Sher E (eds) Nicotinic acetylcholine receptors in the nervous system. Springer, Berlin Heidelberg New York, pp 331–350

    Google Scholar 

  • Nordberg A, Hartvig P, Lundqvist H, Antoni G, Ulin J, Långström B (1989a) Uptake and regional distribution of (+)-(R)- and (−)-(S)-N-methyl-11C-nicotine in the brains of Rhesus monkey — An attempt to study nicotinic receptors in vivo. J Neural Transm (P-D Sect) 1: 195–205

    Google Scholar 

  • Nordberg A, Nilsson-Håkansson L, Adem A, Hardy J, Alafuzoff I, Lai Z, Herrera-Marschitz M, Winblad B (1989b) The role of nicotinic receptors in the pathophysiology of Alzheimer's disease. Prog Brain Res 79: 353–362

    Google Scholar 

  • Nybäck H, Nordberg A, Långström B, Halldin C, Hartvig P, Åhlin A, Swan C-G, Sedvall G (1989) Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. Prog Brain Res 79: 313–319

    Google Scholar 

  • Perry EK, Perry R, Smith CJ, Dick DJ, Candy JM, Edwardson JA, Fairbairn A, Blessed G (1987) Nicotinic receptor abnormalities in Alzheimer's and Parkinson's diseases. J Neurosurg Psychiatry 50: 806–809

    Google Scholar 

  • Reitan RM (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 8: 271–276

    Google Scholar 

  • Wechsler DA (1945) A standardized memory scale for clinical use. J Psychol 19: 87–95

    Google Scholar 

  • Wechsler DA (1981) Wechsler Adult Intelligence Scale — Revised manual. Psychological Corporation, New York

    Google Scholar 

  • Weingartner H, Grafman J, Boutelle W, Kaye W, Martin PR (1983) Forms of memory failure. Science 122: 380–382

    Google Scholar 

  • Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle JT, Price PL, Kellar KJ (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res 371: 146–151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordberg, A., Hartvig, P., Lilja, A. et al. Decreased uptake and binding of11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Gen Sect 2, 215–224 (1990). https://doi.org/10.1007/BF02257652

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257652

Keywords

Navigation