Skip to main content
Log in

Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

This paper will review work mainly done during the last twenty years on the involvement of phytoalexin and phenolic compounds in mycorrhizal interactions. It has been observed that phytoalexins and associated molecules accumulate in roots after mycorrhizal infection, but less intensively and more slowly than in pathogenic interactions. Following mycorrhizal infection, enzymes of phenylpropanoid metabolism have been shown to be activated differentially. Some flavonoids and isoflavonoids have been reported to stimulate in vitro germination of mycorrhizal fungi or in vitro mycorrhizal infection, but their biological significance in signalling between the two symbiotic partners, and in biocontrol of plant disease by arbuscular mycorrhizal fungi, have not yet been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey J A 1982 Physiological and biochemical events associated with the expression of resistance to disease.In Active Defence Mechanisms in Plants. Ed. R K S Wood. pp 39–65. Plenum Publishing Corporation, Bristol, UK.

    Google Scholar 

  • Bärtschi H, Gianinazzi-Pearson V and Vegh I 1981 Vesiculararbuscular mycorrhiza formation and root rot disease (Phytophthora cinnamomi) development inChamaecyparis lawsoniaria. Phytopath. Z. 102, 213–218.

    Google Scholar 

  • Bécard G, Douds D D and Pfeffer P E 1992 Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl. Environ. Microbiol. 58, 821–825.

    Google Scholar 

  • Bécard G, Taylor L P, Douds D D, Pfeffer P E and Doner L W 1995 Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Mol. Plant. Microbe Interaction 8, 252–258.

    Google Scholar 

  • Calvet C, Pinochet J, Camprubi A and Fernandez C 1995 Increased tolerance to the root lesion nernatodePratylenchus vulnus in mycorrhizal micropropagated BA-29 quince rootstock. Mycorrhiza 5, 253–258.

    Google Scholar 

  • Caron M 1989 Problématique de l'utilisation des champignons endomycorrhiziens comme agents de lutte biologique. Phytoprotection 70, 43–49.

    Google Scholar 

  • Chabot S, Belrhlid R, Chenevert R and Piche Y 1992 Hyphal growth prornotion in vitro of the VA mycorrhizal fungus,Gigaspora margarita Becker and Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions. New Phytol. 122, 461–467.

    Google Scholar 

  • Codignola A, Verotta L, Spanu P, Maffei M, Scannerini S and Bonfante-Fasolo P 1989 Cell wall bound-phenols in roots of vesicular-arbuscular mycorrhizal plants. New Phytol. 112, 221–228.

    Google Scholar 

  • Dehne H W 1982 Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72, 1115–1119.

    Google Scholar 

  • Dehne H W and Schönbeck F 1979 Investigations on the influence of endotrophic mycorrhiza on plant diseases. II. Phenol metabolism and lignification. Phytopathol. Z. 95, 210–216.

    Google Scholar 

  • Dixon R A, Choudhary A D, Dalkin K, Edwards R, Fahrendorf T, Gowri G, Harrison M J, Lamb C J, Loake G J, Maxwell C A, Orr J and Paiva N L 1992 Molecular biology of stress-induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa.In Phenolic Metabolism in Plants. Eds. H A Stafford and R K Ibrahim. pp 91–138. Plenum Publishing Corp, New York.

    Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V and Silvio G 1989 First report of non-mycorrhizal plant mutants (Myc) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.). Plant Science 60, 215–222.

    Article  Google Scholar 

  • El Ghachtouli N 1995 Polyamines and mycorrhiza development in mycorrhiza-susceptible (Myc+) and resistant (Myc) pea genotypes. Doctoral Thesis, Burgundy University, Dijon, France. 222 p.

    Google Scholar 

  • Franken P and Gnädinger F 1994 Analysis of parsley arbuscular endomycorrhiza: infection development and mRNA levels of defense-related genes. Mol. Plant Microbe Interaction 7, 612–620.

    Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B and Gianinazzi S 1989 In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by root exudates and plant flavonoids. Symbiosis 7, 243–255.

    Google Scholar 

  • Gollotte A 1994 Cellular and molecular studies of interactions between roots and symbiotic or non symbiotic fungi in mycorrhiza-susceptible (Myc+) or resistant (Myc) peas. Doctora thesis, Burgundy University, Dijon, France. 101 p.

    Google Scholar 

  • Graham J H 1986 Citrus mycorrhizae: potential benefits and interactions with pathogens. Hort. Science 2, 1302–1306.

    Google Scholar 

  • Graham M Y and Graham T L 1991 Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment withPhytophthora-megasperma f. sp.Glycinea wall glucan. Plant Physiol. 97, 1445–1455.

    Google Scholar 

  • Grandmaison J, Olah G M, Vancalsteren M R and Furlan V 1993 Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza 3, 155–164.

    Article  Google Scholar 

  • Hahlbrock K and Scheel D 1989 Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 347–369.

    Article  Google Scholar 

  • Harrison M J and Dixon R A 1993 Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of Vesicular-Arbuscular mycorrhizal associations in roots ofMedicago truncatula. Mol. Plant Microbe Interaction 6, 643–654.

    Google Scholar 

  • Harrison M J and Dixon R A 1994 Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots ofMedicago truncatula and the mycorrhizal fungusGlomus versiforme. Plant J. 6, 9–20.

    Google Scholar 

  • Hwang S F, Chang K F and Chakravarty P 1992 Effects of Vesicular-Arbuscular Mycorrhizal Fungi on the development ofVerticillium andFusarium Wilts of alfalfa. Plant Dis. 76, 239–243.

    Google Scholar 

  • Kape R and Werner D 1990 Chemotaxis and nod gene activity ofBradyrhizobium japonicum in response to hydroxycinnamic acids and isoflavonoids.In Nitrogen Fixation: Achievements and Objectives. Eds. PM Gresshoff, G Stacey and WE Newton. pp 264. New York.

  • Kape R, Wex K, Parniske M, Gorge E, Wetzel A and Werner D 1992 Legume root metabolites and VA-Mycorrhiza development. J. Plant Physiol. 141, 54–60.

    Google Scholar 

  • Kaplan D R, Keen N T and Thomason I J 1980 Study of the mode of action of glyceollin in soybean. Incompatibility to the root knot nematodeMeloidogyne incognita. Physiol. Plant Pathol. 16, 319–325.

    Google Scholar 

  • Koide R T and Schreiner R P 1992 Regulation of the vesiculararbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. 557–581.

  • Krishna K R and Bgyaraj D J 1984 Phenols in mycorrhizal roots ofArachis hypogaea. Experientia 40, 85–86.

    Google Scholar 

  • Lambais M R and Mehdy M C 1993 Suppression of endochitinase, beta-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Mol. Plant Microbe Interaction 6, 75–83.

    Google Scholar 

  • Maier W, Peipp H, Schmidt J, Wray V and Strack D 1995 Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiol. 109, 465–470.

    PubMed  Google Scholar 

  • Mansfield J W 1982 The role of phytoalexins in disease resistance.In Phytoalexins. Ed. J A Bailey and J W Mansfield, pp 253–288. Blackie, Glasgow.

    Google Scholar 

  • McNeil M, Darvill A G, Fry S C and Albersheim P 1984 Structure and function of the primary cell walls of plants. Annu. Rev. Biochem. 53, 625–663.

    Article  PubMed  Google Scholar 

  • Morandi D 1989 Effect of xenobiotics on endomycorrhizal infection and isoflavonoid accumulation in soybean roots. Plant Physiol. Biochem. 27, 697–701.

    Google Scholar 

  • Morandi D, Bailey J A and Gianinazzi-Pearson V 1984 Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol. Plant Pathol. 24, 357–364.

    Google Scholar 

  • Morandi D, Branzanti B and Gianinazzi-Pearson V 1992 Effect of some plant flavonoids on in vitro behaviour of an arbuscular mycorrhizal fungus. Agronomie 12, 811–816.

    Google Scholar 

  • Morandi D and Gianinazzi-Pearson V 1986 Influence of mycorrhizal infection and phosphate nutrition on secondary metabolite contents of soybean roots.In Physiological and Genetical Aspects of Mycorrhizae. Eds. V Gianinazzi-Pearson and S Gianinazzi pp 787–791. INRA Press, Paris.

    Google Scholar 

  • Morandi D and Le Quéré J-L 1991 Influence of nitrogen on accumulation of isosojagol (a newly detected coumestan in soybean) and associated isoflavonoids in roots and nodules of mycorrhizal and non-mycorrhizal soybean. New Phytol. 117, 75–79.

    Google Scholar 

  • Nair M G, Safir G R and Siqueira J O 1991 Isolation and identification of vesicular arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl. Environ. Microbiol. 57, 434–439.

    Google Scholar 

  • Paulitz T C and Linderrnan R G 1991 Mycorrhizal interactions with soil organisms.In Handbook of applied mycology. Eds. D K Arora, B Rai, K G Mukerji and G R Knudsen pp 77–129. Marcel Dekker Inc., New York.

    Google Scholar 

  • Pedersen C T, Safir G R, Sicqueira J O and Parent S 1991 Effect of phenolic compounds on asparagus mycorrhiza. Soil. Biol. Biochem. 23, 491–494.

    Article  Google Scholar 

  • Phillips D A and Tsai S M 1992 Flavonoids as plant signals to rhizosphere microbes. Mycorrhizal, 55–58.

  • Poulin M J, Belrhlid R, Piche Y and Chenevert R 1993 Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrhizal fungi in the presence of optimal CO2 enrichment. J. Chem. Ecol. 19, 2317–2327.

    Google Scholar 

  • Sagan M, Morandi D, Tarenghi E and Duc G 1995 Selection of nodulation and mycorrhizal mutants in the model plantMedicago truncatula (Gaertn) after gamma-ray mutagenesis. Plant Sci. 111, 63–71.

    Google Scholar 

  • Sanchez F, Padilla J E, Perez H and Lara M 1991 Control of nodulin genes in root-nodule development and metabolism. Annu Rev. Plant Physiol. 42, 507–528.

    Article  Google Scholar 

  • Schenck N C, Kinloch R A and Dickson D W 1975 Interaction of endomycorrhizal fungi and root knot nematode on soybean.In Endomycorrhizas. Eds. F E Sanders, B Mosse and P B Tinker. pp 605–617. Academic Press, London.

    Google Scholar 

  • Schmidt P E, Broughton W J and Werner D 1994 Nod factors ofBradyrhizobium japonicum andRhizobium sp NGR234 induce flavonoid accumulation in soybean root exudate. Mol. Plant Microbe Interaction 7, 384–390.

    Google Scholar 

  • Siqueira J O, Safir G R and Nair M G 1991 Stimulation of vesiculararbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol. 118, 87–93.

    Google Scholar 

  • Spanu P and Bonfante-Fasolo P 1988 Cell-wall bound peroxidase activity in roots of mycorrhizalAlliuum porrum. New Phytol. 109, 119–124.

    Google Scholar 

  • Sundaresan P, Raja N U and Gunasekaran P 1993 Induction and accumulation of phytoalexins in cowpea roots infected with a mycorrhizal fungusGlomus fasciculatum and their resistance to fusarium wilt disease. J. Biosciences 18, 291–301.

    Google Scholar 

  • Tsai S M and Phillips D A 1991 Flavonoids released naturally from alfalfa promote development of symbioticGlomus spores in vitro. Appl. Environ. Microbiol. 57, 1485–1488.

    Google Scholar 

  • Volpin H, Elkind Y, Okon Y and Kapulnik Y 1994 A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol. 104, 683–689.

    PubMed  Google Scholar 

  • Volpin H, Phillips D A, Okon Y and Kapulnik Y 1995 Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 108, 1449–1454

    PubMed  Google Scholar 

  • Wacker T L, Safir G R and T. Stephens C 1990 Effects of ferulic acid onGlomus fasciculatum and associated effects of phosporus uptake and growth of asparagus (Asparagus officinalis L.). J. Chem. Ecol. 16, 901–909.

    Article  Google Scholar 

  • Wyss P, Boller T and Wiemken A 1989 Glyceollin production in soybean during the process of infection byGlomus mosseae andRhizoctonia solani. Agric. Ecos. Environ. 29, 451–456.

    Google Scholar 

  • Xie Z P, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton W J, Vogellange R and Boller T 1995 Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and non-nodulating soybeans. Plant Physiol. 108, 1519–1525.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morandi, D. Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185, 241–251 (1996). https://doi.org/10.1007/BF02257529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257529

Key words

Navigation