Skip to main content
Log in

Gas chroamtographic separation of optically active compounds in glass capillaries

  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Chiral compounds may be separated by gas chromatography by direct enantiomer separation on optically active stationary phases. More generally the separation can be achieved on conventional stationary phases after formation of diastereoisomeric derivatives. In this work we report on new results in enantiomer separation, indicating that hydrogen bond association is not the only kind of molecular interaction responsible for enantiomer separation. For the separation of a wide variety of chiral compounds with amino or hydroxy groups diastereo-isomeric derivatives may be formed by reaction with L-α-chlorisovaleryl chloride. The derivatives of amino acids, aliphatic and aromatic amines, amino alcohols and of some alcohols are separated in glass capillaries. Gas chromatography as a separation technique of high selectivity is specifically useful for the separation of mixtures of chemically related components with comparable molecular interactions with the molecules of the stationary phase of a gas chromatographic column. The separation of optically active compounds, particularly, requires highly efficient columns. Glass capillary chromatography is a tool that meets this standard and was applied exclusively in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. E. Gil-Av., B. Feibush andR. Charles-Sigler, in “Gas Chromatography 1966”,A. B. Littlewood, Ed., Institute of Petroleum, London, 1972, p. 227.

    Google Scholar 

  2. W. A. Koenig, W. Parr, H. A. Lichtenstein, E. Bayer andJ. Oró, J. Chromatogr., Sci.8, 183–186.

  3. B. Feibush, Chem. Commun. 544–545, (1971).

  4. W. A. Koenig andG. J. Nicholson, Anal. Chem.47, 951–952 (1975).

    Article  PubMed  Google Scholar 

  5. W. A. Koenig, W. Loeffler W. H. Meyer andR. Uhmann, Chem. Ber.106, 816–825 (1973).

    Google Scholar 

  6. W. A. Koenig, C. Engelfried, H. Hagenmaier andH. Kneifel, Liebig's Ann. Chem. 2011–2020 (1976).

  7. W. Parr, C. Yang, E. Bayer andE. Gil-Av, J. Chromatogr. Sci.8, 591–595 (1970).

    Google Scholar 

  8. J. A. Corbin, J. E. Rhoad andL. B. Rogers, Anal. Chem.43, 327–331 (1971).

    Article  PubMed  Google Scholar 

  9. W. Parr andP. Y. Howard, J. Chromatogr.71, 193–201 (1972).

    Article  Google Scholar 

  10. U. Beitler andB. Feibush, J. Chromatogr.123, 149–166 (1976).

    Article  PubMed  Google Scholar 

  11. K. Stoelting andW. A. Koenig, Chromatographia9, 331–332 (1976).

    Google Scholar 

  12. W. A. Koenig andU. Hess, Liebig's Ann. Chem. 1977 in press.

  13. S. Weinstein, B. Feibush andE. Gil-Av, J. Chromatogr.126, 97–111 (1976).

    Article  Google Scholar 

  14. W. A. Koenig, W. Rahn andJ. Eyem, J. Chromatogr.133, 141–146 (1977).

    Article  PubMed  Google Scholar 

  15. W. A. Koenig, Chromatographia9, 72–73 (1976).

    Google Scholar 

  16. W. Rahn, H. Eckstein andW. A. Koenig, Hoppe-Seyler's Z. Physiol. Chem.357, 1223–1227 (1976).

    PubMed  Google Scholar 

  17. B. Halpern andJ. W. Westley, Chem. Commun. 246–247 (1965).

  18. J. Bouche andM. Verzele, J. Gas Chromatogr.6, 501–505 (1968).

    Google Scholar 

  19. S. C. J. Fu, S. M. Birnbaum andJ. P. Greenstein, J. Am. Chem. Soc.76, 6054–6058 (1954).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenig, W.A., Stoelting, K. & Kruse, K. Gas chroamtographic separation of optically active compounds in glass capillaries. Chromatographia 10, 444–448 (1977). https://doi.org/10.1007/BF02257358

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257358

Keywords

Navigation