Skip to main content
Log in

TheTy1-copia group retrotransposons ofAllium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin

  • Technical Viewpoint
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The genomic organization and diversity of theTy1-copia group retrotransposons has been investigated in a monocotyledonous plant,Allium cepa. We used the polymerase chain reaction (PCR) to generate sequences corresponding to a conserved domain of the reverse transcriptase gene ofTy1-copia retrotransposons in this plant. Sequence analysis of 27 of these PCR products shows that they are a highly heterogeneous population, a feature which is common in plants but not in yeast andDrosophila. Slot-blot analysis shows there are 100 000–200 000 copies ofTy1-copia group retrotransposons within theA. cepa genome (2C=31.7 pg), indicating that they are a significant component of the genome of this plant.In situ hybridization to metaphase chromosomes reveals thatTy1-copia retrotransposons are distributed throughout the euchromatin of all chromosomes ofA. cepa but are enriched in the terminal heterochromatic regions, which contain tandem arrays of satellite sequences. This is the first clear evidence for the presence ofTy1-copia retrotransposons in the terminal heterochromatin of plants and contrasts with the distribution of these elements in other plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnes SR, James AM, Jamieson G. (1985) The organisation, nucleotide sequence, and chromosomal distribution of a satellite DNA fromAllium cepa.Chromosoma 92: 185–192.

    Google Scholar 

  • Beissmann H, Mason JM (1992) Genetics and molecular biology of telomeres.Adv Genet 30: 185–249.

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms.Phil Trans Royal Soc Lond B 274: 227–274.

    Google Scholar 

  • Bingham PM, Zachar Z (1989) Retrotransposons and FB elements fromDrosophila melanogaster. In: Berg DE, Howe MM, eds.Mobile DNA. Washington DC: American Society for Microbiology, pp 485–502.

    Google Scholar 

  • Boeke JD (1989) Transposable elements inSaccharomyces cerevisiae. In: Berg DE, Howe MM, eds.Mobile DNA. Washington DC: American Society for Microbiology, pp 335–374.

    Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse-transcription of retrotransposons.Annu Rev Microbiol 43: 403–434.

    Google Scholar 

  • Camirand A, St Pierre B, Martineau C, Brisson N (1990) Occurrence of aCopia-like transposable element in one of the introns of the potato starch phosphorylase gene.Mol Gen Genet 224: 33–39.

    Google Scholar 

  • Carmena M, Gonzalez C (1995) Transposable elements map in a conserved pattern of distribution extending from Beta-heterochromatin to centromeres inDrosophila.Chromosoma 103: 676–684.

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programmes for the VAX.Nucleic Acids Res 12: 387–395.

    Google Scholar 

  • Dobel P, Schubert I, Rieger R (1978) Distribution of heterochromatin in a reconstructed karyotype ofVicia faba as identified by banding and DNA-late replication patterns.Chromosoma 69: 193–209.

    Google Scholar 

  • Doolittle RF, Feng D (1990) Nearest neighbour procedure for relating progressively aligned amino acid sequences. In: Doolittle RF, ed.,Methods in Enzymology, Vol. 183, 659–669. New York: Academic Press.

    Google Scholar 

  • Feng DF, Doolittle RF (1990) Progressive alignment and phylogenetic tree construction of protein sequences. In: Doolittle RF, ed.,Methods in Enzymology, Vol. 183, 375–387. New York: Academic Press.

    Google Scholar 

  • Flavell AJ, Smith D, Kumar A. (1992a)Copia-Ty family retrotransposon heterogeneity in plants.Mol Gen Genet 231: 233–242.

    Google Scholar 

  • Flavell AJ, Dumbar E, Anderson R et al. (1992b)Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants.Nucleic Acids Res 20: 3639–3644.

    Google Scholar 

  • Flavell AJ, Pearce SR, Kumar A (1994) Plant transposable elements and the genome.Curr Opin Genet Dev 4: 838–844.

    Google Scholar 

  • Fuchs J, Pich U, Meister I, Schubert I (1994) Differentiation of field bean heterochromatin byin situ hybridisation with a repeated Fok 1 Sequence.Chrom Res 2: 25–28.

    Google Scholar 

  • Grandbastien M-A (1992) Retroelements in higher plants.Trends Genet 8: 103–108.

    Google Scholar 

  • Grandbastien M-A, Spielman A, Caboche M (1989)Tnt1: a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics.Nature 337: 376–380.

    Google Scholar 

  • Heitz E (1932) Die Herkunft der chromozentren.Planta 18: 571–636.

    Google Scholar 

  • Hirochika H, Hirochika R (1993)Ty1-copia retrotransposons as ubiquitous components of plant genomes.Jpn J Genet 68: 35–46.

    Google Scholar 

  • Hirochika H, Fukuchi A, Kikuchi F (1992) Retrotransposon families in rice.Mol Gen Genet 233: 209–216.

    Google Scholar 

  • Inouye S, Yuki S, Saigo K (1984) Sequence-specific insertion of theDrosophila transposable genetic element17.6.Nature 310: 332–333.

    Google Scholar 

  • Irifune K, Hirai K, Zheng J, Tanaka R, Morikawa H (1995) Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization inAllium fistulosum.Theor Appl Genet 90: 312–316.

    Google Scholar 

  • Kirchner J, Connolly CM, Sandmeyer SB (1995) Requirement of RNA polymerase III transcription factor forin vitro position-specific integration of a retrovirus-like element.Science 267: 1488–1491.

    Google Scholar 

  • Konieczny A, Voytas DF, Cummings MP, Ausubel FM (1991) A superfamily ofArabidopsis thaliana retrotransposons.Genetics 127: 801–809.

    Google Scholar 

  • Kononowicz AK (1986) Cytofluorometric analysis of changes of heterochromatin fraction during differentiation of root cells in two subspecies ofVicia faba.Bio Zentralbl 105: 69–83.

    Google Scholar 

  • Kumar A (1996) The adventures ofTy1-copia retrotransposons in plants.Trends Genet 12: 41–43.

    Google Scholar 

  • Leeton PJ, Smyth DR (1993) An abundant LINE like element amplified in the genome ofLilium speciosum.Mol Gen Genet 237: 97–104.

    Google Scholar 

  • Levis RW, Ganesan R, Houtchens K (1993) Transposons in place of telomeric repeats atDrosophila telomere.Cell 75: 1083–1093.

    Google Scholar 

  • Manninen I, Schulman AH (1993)BARE-1 acopia-like retro-element in barley (Hordeum vulgare).Plant Mol Biol 22: 829–864.

    Google Scholar 

  • Pearce SR, Harrison G, Li D et al. (1996) TheTy1-copia group retrotransposons inVicia species: copy number, sequence heterogeneity and chromosomal localisation.Mol Gen Genet 250: 305–315.

    Google Scholar 

  • Pich U, Fritsch R, Schubert I (1996a) Closely relatedAllium species share a very similar satellite sequence.Plant Syst Evol (in press).

  • Pich U, Fuchs J, Schubert I (1996b) How do Alliaceae stabilise their chromosome ends in the absence of TTTAGGG-sequences?Chrom Res 4: 207–213.

    Google Scholar 

  • Pimpinelli S, Berloco M, Fanti L et al. (1995) Transposable elements are stable structural components ofDrosophila melanogaster heterochromatin.Proc Natl Acad Sci USA 92: 3804–3808.

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensoen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics.Proc Natl Acad Sci USA 81: 8014–8018.

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989)Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York.

    Google Scholar 

  • Schmidt T, Kubis S, Heslop-Harrison JS (1995) Analysis and chromosomal localisation of retrotransposons in sugarbeet (Beta vulgaris L.): LINEs andTy1-Copia-like elements as major components of the genome.Chrom Res 3: 335–345.

    Google Scholar 

  • Schwarzacher T, Leitch AR, Heslop-Harrison JS (1994) DNAin situ hybridization-methods for light microscopy. In: Harris N, Oparka KJ, eds.Plant Cell Biology: A Practical Approach. Oxford: Oxford University Press, pp 127–155.

    Google Scholar 

  • Smyth DR (1993) Plant Retrotransposons. In: Verma DPS, ed.Control of Gene Expression. London: CRC Press, pp 1–15.

    Google Scholar 

  • Suoniemi A, Anamthawat-Jonsson K, Arna T, Schulman AH (1996) RetrotransposonsBARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome.Plant Mol Biol (in press).

  • VanderWeil PL, Voytas DF, Wendel JF (1993)Copia-like retrotransposable elements evolution in diploid and polyploid cotton (Gossypium L.)J Mol Evol 36: 429–447.

    Google Scholar 

  • Vosa GC (1976) Heterochromatic patterns inAllium: L. The relationship between the species of thecepa group and its allies.Heredity 36: 383–392.

    Google Scholar 

  • Voytas DF, Ausubel FM (1988) Acopia-like transposable element family inArabidopsis thaliana.Nature (London) 336: 342–344.

    Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992)Copia-like retrotransposons are ubiquitous among plants.Proc Natl Acad Sci USA 89: 7124–7128.

    Google Scholar 

  • White SE, Hebara L, Wessler SR (1994) Retrotransposons in the flanking regions of normal plant genes: a role forcopia-like elements in the evolution of gene structure and expression.Proc Natl Acad Sci USA 91: 11792–11796.

    Google Scholar 

  • Zakian VA (1989) Structure and function of telomeres.Annu Rev Genet 23: 579–604.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

accepted for publication by H. C. Macgregor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, S.R., Pich, U., Harrison, G. et al. TheTy1-copia group retrotransposons ofAllium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res 4, 357–364 (1996). https://doi.org/10.1007/BF02257271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02257271

Key words

Navigation