Mechanics of Composite Materials

, Volume 35, Issue 3, pp 253–258 | Cite as

Stress state of thermosensitive thick cylinders made of anisotropic composites

  • A. T. Vasilenko
  • G. K. Sudavtsova
Article
  • 37 Downloads

Abstract

The class of problems on the axially symmetric stress state of thick cylinders made of anisotropic materials is considered. The problems are solved numerically. The temperature and mechanical fields in the composite cylinders are investigated taking into account the temperature dependence of the matrix and reinforcement characteristics, as well as the variability of density and angle of reinforcement across the thickness.

Key words

thick-walled cylinders anisotropy of properties thermoelasticity numerical methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Lomakin, Theory of Elasticity of Heterogeneous Bodies [in Russian], Moscow (1977).Google Scholar
  2. 2.
    A. I. Beil', G. G. Portnov, I. V. Sanina, and V. Ya. Yakushin, “Elimination of the initial thermal stresses in wound articles made from composites by varying the winding angle over the thickness,” Mech. Compos. Mater.,16, No. 6, 715–720 (1980).CrossRefGoogle Scholar
  3. 3.
    A. T. Vasilenko and N. D. Pankratova, “Investigation of spatial effects in problems of the thermally stressed state of anisotropic shells,” Mech. Compos. Mater.,25, No. 3, 362–368 (1989).CrossRefGoogle Scholar
  4. 4.
    S.-Y. Lee and G. S. Springer “Filament winding cylinders. I. Process model,” J. Compos. Mater.,24, No. 12, 1270–1298 (1990).Google Scholar
  5. 5.
    Higher, Russo, and Thomkins, “Thermal twisting of tubes made of laminar epoxygraphitoplastic,” Sovrem. Mashinostr., B, No. 1, 16–23 (1989).Google Scholar
  6. 6.
    J. Luo and C. T. Sun, “Global-local methods for thermoelastic analysis of thick fiber-wound cylinders,” J. Compos. Mater.25, No. 4, 453–468 (1991).Google Scholar
  7. 7.
    T. R. Tauchert, “Optimum design of reinforced cylindrical pressure vessels,” J. Compos. Mater.,15, No. 5, 390–402 (1981).Google Scholar
  8. 8.
    L. E. Doxsee, Jr, and G. S. Springer, “Measurements of temperature induced deformations in composite cylindrical shells,” J. Compos. Mater.,25, No. 10, 1340–1350 (1991).Google Scholar
  9. 9.
    A. A. Berlin, S. A. Vol'fson, V. G. Oshmyan, and N. S. Enikolopov, Principles of Designing Composite Polymer Materials [in Russian], Khimiya, Moscow (1990).Google Scholar
  10. 10.
    R. Christensen, Mechanics of Composite Materials, John Wiley & Sons, New York-Chichester-Brisbane-Toronto (1979).Google Scholar
  11. 11.
    V. V. Vasil'ev and Y. M. Tarnopol'skii (eds.) Composite Materials. Handbook [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  12. 12.
    S. G. Lekhnitskii, Theory of Elasticity of Anisotropic Bodies [in Russian], Nauka, Moscow (1977).Google Scholar
  13. 13.
    Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova, Problems of the Theory of Elasticity of Nonuniform Bodies [in Russian], Naukova Dumka, Kiev (1991).Google Scholar
  14. 14.
    A. M. Skudra, F. Ya. Bulavs, M. R. Gurvich, and A. A. Kruklins, Elements of Engineering Mechanics of Rod Systems from Composite Materials [in Russian], Zinatne, Riga (1989).Google Scholar
  15. 15.
    A. N. Guz', L. P. Khoroshun, and G. A. Vanin (eds.), Mechanics of Composite Materials, and Structural Elements. Vol. 1. Mechanics of Materials [in Russian], Naukova Dumka, Kiev (1982).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • A. T. Vasilenko
  • G. K. Sudavtsova

There are no affiliations available

Personalised recommendations