Skip to main content
Log in

Genetic reassortment and patch repair by recombination in retroviruses

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Retroviral particles contain a diploid RNA genome which serves as template for the synthesis of double-stranded DNA in a complex process guided by virus-encoded reverse transcriptase. The dimeric nature of the genome allows the proceeding polymerase to switch templates during copying of the copackaged RNA molecules, leading to the generation of recombinant proviruses that harbor genetic information derived from both parental RNAs. Template switching abilities of reverse transcriptase facilitate the development of mosaic retroviruses with altered functional properties and thereby contribute to the restoration and evolution of retroviruses facing altering selective forces of their environment. This review focuses on the genetic patchwork of retroviruses and how mixing of sequence patches by recombination may lead to repair in terms of re-established replication and facilitate increased viral fitness, enhanced pathogenic potential, and altered virus tropisms. Endogenous retroelements represent an affluent source of functional viral sequences which may hitchhike with virions and serve as sequence donors in patch repair. We describe here the involvement of endogenous viruses in genetic reassortment and patch repair and review important examples derived from cell culture and animal studies. Moreover, we discuss how the patch repair phenomenon may challenge both safe usage of retrovirus-based gene vehicles in human gene therapy and the use of animal organs as xenografts in humans. Finally, the ongoing mixing of distinct human immunodeficiency virus strains and its implications for antiviral treatment is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aagaard L, Mikkelsen JG, Lund AH, Duch M, Pedersen FS. Unpublished observations.

  2. Allain B, Lapadat-Tapolsky M, Berlioz C, Darlix JL. Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J 13:973–981;1994.

    Google Scholar 

  3. Allain B, Rascle JB, de Rocquigny H, Roques B, Darlix JL. CIS elements and transacting factors required for minus strand DNA transfer during reverse transcription of the genomic RNA of murine leukemia virus. J Mol Biol 277:225–235;1998.

    Google Scholar 

  4. Anderson JA, Teufel RJ II, Yin PD, Hu WS. Correlated template-switching events during minus-strand DNA synthesis: A mechanism for high negative interference during retroviral recombination. J Virol 72:1186–1194;1998.

    Google Scholar 

  5. Anderson JA, Bowman EH, Hu WS. Retroviral recombination rates do not increase linearly with marker distance and are limited by the size of the recombining subpopulation. J Virol 72:1195–1202;1998.

    Google Scholar 

  6. Bach FH, Fishman JA, Daniels N, Proimos J, Anderson B, Carpenter CB, Forrow L, Robson SC, Fineberg HV. Uncertainity in xenotransplantation: Individual benefit versus collective risk. Nat Med 4:141–144;1998.

    Google Scholar 

  7. Baltimore D. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211;1970.

    Google Scholar 

  8. Benade LE, Ihle JN, Decléve A. Serological characterization of B-tropic viruses of C57BL mice: Possible origin by recombination of endogenous N-tropic xenotropic viruses. Proc Natl Acad Sci USA 75:4553–4557;1978.

    Google Scholar 

  9. Bénit L, de Parseval N, Casella JF, Callebaut I, Cordonnier A, Heidmann T. Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with agag coding sequence closely related to theFvl restriction gene. J Virol 71:5652–5657;1997.

    Google Scholar 

  10. Berkhout B, van Wamel J, Klaver B. Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions. J Mol Biol 252:59–69;1995.

    Google Scholar 

  11. Berkhout B, Das AT, van Wamel JLB. The native structure of the human immunodeficiency virus type 1 RNA genome is required for the first strand transfer of reverse transcription. Virology 249:211–218;1998.

    Google Scholar 

  12. Berwin B, Barklis E. Retrovirus-mediated insertion of expressed and non-expressed genes at identical chromosomal locations. Nucleic Acids Res 21:2399–2407;1993.

    Google Scholar 

  13. Best S, Le Tissier P, Towers G, Stoye JP. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382:826–829;1996.

    Google Scholar 

  14. Blackard JT, Renjifo BR, Mwakagile D, Montano MA, Fawzi WW, Essex M. Transmission of human immunodeficiency virus type 1 viruses with intersubtype recombinant long terminal repeat sequences. Virology 254:220–225;1999.

    Google Scholar 

  15. Boeke JD, Stoye JP. Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SP, Varmus HE, eds. Retroviruses. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 343–435;1997.

    Google Scholar 

  16. Bonham L, Wolgamot G, Miller AD. Molecular cloning ofMus dunni endogenous virus: An unusual retrovirus in a new murine viral interference group with a wide host range. J Virol 71:4663–4670;1997.

    Google Scholar 

  17. Boone LR, Glover PL, Innes CL, Niver LA, Bondurant MC, Yang WK. Fv-1 N- and B-tropism-specific sequences in murine leukemia virus and related endogenous proviral genomes. J Virol 62:2644–2650;1988.

    Google Scholar 

  18. Buiser RG, Bambara RA, Fay PJ. Pausino by retroviral DNA polymerases promotes strand transfer from internal regions of RNA donor templated to homopolymeric acceptor templates. Biochym Biophys Acta 1216:20–30;1993.

    Google Scholar 

  19. Carr JK, Salminen MO, Albert J, Sanders-Buell E, Gotte D, Birx DL, McCutchan FE. Full genome sequences of human immunodeficiency virus type 1 subtypes G and A/G intersubtype recombinants. Virology 247:22–31;1998.

    Google Scholar 

  20. Chakraborty AK, Zink MA, Hodgson CP. Transmission of endogenous VL30 retrotransposons by helper cells used in gene therapy. Cancer Gene Ther 1:113–118;1994.

    Google Scholar 

  21. Champoux JJ. Roles of ribonuclease H in reverse transcription. In: Skalka AM, Goff SP, eds. Reverse Transcriptase. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 103–117;1993.

    Google Scholar 

  22. Chong H, Vile RG. Replication-competent retrovirus produced by a split-function third generation amphotropic packaging cell line. Gene Ther 3:624–629;1996.

    Google Scholar 

  23. Chong H, Starkey W, Vile RG. A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. J Virol 72:2663–2670;1998.

    Google Scholar 

  24. Coffin JM. Structure, replication, and recombination of retrovirus genomes: Some unifying hypotheses. J Gen Virol 42:1–26;1979.

    Google Scholar 

  25. Coffin JM. Retroviridae: The viruses and their replication. In: Fields BN, Knipe DM, Howley PM, eds. Fields Virology, ed 3. Philadelphia, Lippincott-Raven Publishers, 1767–1847;1996.

    Google Scholar 

  26. Colicelli J, Goff SP. Mutants and pseudorevertants of Moloney murine leukemia virus with alterations at the integration site. Cell 42:573–580;1985.

    Google Scholar 

  27. Colicelli J, Goff SP. Isolation of a recombinant murine leukemia virus utilizing a new primer rRNA. J Virol 57:37–45;1987.

    Google Scholar 

  28. Colicelli J, Goff SP. Identification of endogenous retroviral sequences as potential donors for recombinational repair of mutant retroviruses: Positions of cross-over points. Virology 160:518–522;1987.

    Google Scholar 

  29. Colicelli J, Goff SP. Isolation of an integrated provirus of Moloney murine leukemia virus with long terminal repeats in inverted orientation: Integration utilizing two U3 sequences. J Virol 62:633–636;1988.

    Google Scholar 

  30. Das AT, Klaver B, Berkhout B. Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNALys3. J Virol 69:3090–3097;1995.

    Google Scholar 

  31. DesGroseillers L, Jolicoeur P. Physical mapping of theFv-1 tropism host range determinant of BALB/c murine leukemia viruses. J Virol 48:685–696;1983.

    Google Scholar 

  32. DeStefano JJ, Mallaber LM, Rodriguez-Rodriguez L, Fay PJ, Bambara RA. Requirements for strand transfer between internal regions of heteropolymer templates by human immunodeficiency virus reverse transcriptase. J Virol 66:6370–6378;1992.

    Google Scholar 

  33. DeStefano JJ, Buiser RG, Mallaber LM, Fay PJ, Bambara RA. Parameters that influence synthesis and site-specific termination by human immunodeficiency virus reverse transcriptase on RNA and DNA templates. Biochim Biophys Acta 1131:270–280;1992.

    Google Scholar 

  34. DeStefano JJ. Kinetic analysis of the catalysis of strand transfer from internal regions of heteropolymeric RNA templates by human immunodeficiency virus reverse transcriptase. J Mol Biol 243:558–567;1994.

    Google Scholar 

  35. Diaz L, DeStefano JJ. Strand transfer is enhanced by mismatched nucleotides at the 3′ primer terminus: A possible link between HIV reverse transcriptase fidelity and recombination. Nucleic Acids Res 24:3086–3092;1996.

    Google Scholar 

  36. DiFronzo NL, Holland CA. A direct demonstration of recombination between an injected virus and endogenous viral sequences, resulting in the generation of mink-cell focus-inducing viruses in AKR mice. J Virol 67:3763–3770;1993.

    Google Scholar 

  37. Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeld M, Moen R, Bacher J, Zsebo KM, Nienhuis AW. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176;1125–1135;1992.

    Google Scholar 

  38. Fultz PN, Yue L, Wei Q, Girard M. Human immunodeficiency virus type 1 intersubtype (B/E) recombination in a superinfected chimpanzee. J Virol 71:7990–7995;1997.

    Google Scholar 

  39. Gao F, Robertson DL, Carruthers CD, Morrison SG, Jian B, Chen Y, Barré-Sinoussi F, Girard M, Srinivasan A, Abimiku AG, Shaw GM, Sharp PM, Hahn BH. A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. J Virol 72:5680–5698;1998.

    Google Scholar 

  40. Gautsch JW, Elder JH, Jensen FC, Lerner RA. In vitro construction of a B-tropic virus by recombination: B-tropism is a cryptic phenotype of xenotropic murine retroviruses. Proc Natl Acad Sci USA 77:2989–2993;1980.

    Google Scholar 

  41. Gilboa E, Mitra SW, Goff S, Baltimore D. A detailed model for reverse transcription and tests of crucial aspects. Cell 18:93–100;1979.

    Google Scholar 

  42. Golovkina TV, Jaffe AB, Ross SR. Coexpression of exogenous and endogenous mouse mammary tumor virus RAN in vivo results in viral recombination and broadens the virus host range. J Virol 68:5019–5026;1994.

    Google Scholar 

  43. Goodrich DW, Duesberg PH. Retroviral recombination during reverse transcription. Proc Natl Acad Sci USA 87:2052–2056;1990.

    Google Scholar 

  44. Harrison GP, Mayo MS, Hunter E, Lever AML. Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5′ and 3′ of the catalytic site. Nucleic Acids Res 26:3433–3442;1998.

    Google Scholar 

  45. Hatzoglou M, Hodgson CP, Mularo F, Hanson RW. Efficient packaging of a specific VL30 retroelement by ω2 cells which produce MoMLV recombinant retroviruses. Hum Gene Ther 1:385–397;1990.

    Google Scholar 

  46. Hoeben RC, Migchielsen AAJ, van der Jagt RCM, van Ormondt H, van der Eb AJ. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on ist chromosomal position. J Virol 65:904–912;1991.

    Google Scholar 

  47. Hu WS, Pathak VK, Temin HM. Role of reverse transcriptase in retroviral recombination. In: Skalka AM, Goff SP, eds. Reverse Transcriptase. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 251–274;1993.

    Google Scholar 

  48. Hu WS, Temin HM. Genetic consequences of packaging two RNA genomes in one retroviral particle: Pseudoploidy and high rate of genetic recombination. Proc Natl Acad Sci USA 87:1556–1560;1990.

    Google Scholar 

  49. Hu WS, Temin HM. Retroviral recombination and reverse transcription. Science 250:1227–1233;1990.

    Google Scholar 

  50. Hu WS, Temin HM. Effect of gamma radiation on retroviral recombination. J Virol 66:4457–4463;1992.

    Google Scholar 

  51. Hu WS, Bowman EH, Delviks KA, Pathak VK. Homologous recombination occurs in a distinct retroviral subpopulation and exhibits high negative interference. J Virol 71:6028–6036;1997.

    Google Scholar 

  52. Huber HE, Richardson CC. Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. J Biol Chem 265:10565–10573;1990.

    Google Scholar 

  53. Itin A, Rotman G, Keshet E. Conservation patterns of mouse ‘virus-like’ (VL30) DNA sequences. Virology 127:374–384;1983.

    Google Scholar 

  54. Jones JS, Allan RW, Temin HM. One retroviral RNA is sufficient for synthesis of viral DNA. J Virol 68:207–216;1994.

    Google Scholar 

  55. Junghans RP, Boone LR, Skalka AM. Retroviral DNA H structures: Displacement-assimilation model for recombination. Cell 30:53–62;1982.

    Google Scholar 

  56. Katz RA, Skalka AM. Generation of diversity in retroviruses. Annu Rev Genet 24:409–445;1990.

    Google Scholar 

  57. Kawana A, Iwamoto A, Odawara T, Yoshikura H. Host range conversion of murine leukemia virus resulting from recombination with endogenous virus. Arch Virol 142:139–149;1997.

    Google Scholar 

  58. Keshet E, Shaul Y, Kaminchik J, Aviv H. Heterogeneity of ‘virus-like’ genes encoding retrovirus-associated 30S RNA and their organization within the mouse genome. Cell 20:431–439;1980.

    Google Scholar 

  59. Keshet E, Itin A. Patterns of genomic distribution and sequence heterogeneity of a murine retrovirus-like multigene family. J Virol 43:50–58;1982.

    Google Scholar 

  60. Kim JK, Palaniappan C, Wu W, Fay PJ, Bambara RA. Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1. J Biol Chem 272:16769–16777;1997.

    Google Scholar 

  61. Klarmann GJ, Schauber CA, Preston BD. Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro. J Biol Chem 268:9793–9802;1993.

    Google Scholar 

  62. Klasens BIF, Huthoff HT, Das AT, Jeeninga RE, Berkhout B. The effect of template RNA structure on elongation by HIV-1 reverse transcriptase. Biochim Biophys Acta 1444:355–370;1999.63

    Google Scholar 

  63. Klaver B, Berkhout B. Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Res 22:137–144;1994.

    Google Scholar 

  64. Kulpa D, Topping R, Telesnitsky A. Determination of the site of first strand transfer during moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. Embo J 16:856–865;1997.

    Google Scholar 

  65. Kupiec JJ, Sonigo P. Reverse transcriptase jumps and gaps. J Gen Virol 77:1987–1991;1996.

    Google Scholar 

  66. Lobel LI, Goff SP. Riverse transcription of retroviral genomes: Mutations in the terminal repeat sequences. J Virol 53:447–455;1985.

    Google Scholar 

  67. Lole KS, Bollinger RC, Paranjap RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160;1999.

    Google Scholar 

  68. Lund AH, Duch M, Pedersen FS. Transcriptional silencing of retroviral vectors. J Biomed Sci 3:365–378;1996.

    Google Scholar 

  69. Lund AH, Schmidt J, Luz A, Sørensen AB, Duch M, Pedersen FS. Replication and pathogenicity of primer binding site mutants of SL3-3 murine leukemia viruses. J Virol 73:6117–6122;1999.

    Google Scholar 

  70. Lund AH, Mikkelsen JG, Schmidt J, Duch M, Pedersen FS. The kissing-loop motif is a preferred site of 5′ leader recombination during replication of SL3-3 murine leukemia viruses in mice. J Virol 73:9614–9618;1999.

    Google Scholar 

  71. Luo G, Taylor J. Templates switching by reverse transcriptase during DNA synthesis. J Virol 64:4321–4328;1990.

    Google Scholar 

  72. Mak J, Kleiman L. Primer tRNAs for reverse transcription. J Virol 71:8087–8095;1997.

    Google Scholar 

  73. Makris A, Patriotis C, Bear SE, Tsichlis PN. Structure of a Moloney murine leukemia virus-virus-like 30 recombinant: Implications for transduction of the c-Ha-ras proto-oncogene. J Virol 67:1286–1291;1993.

    Google Scholar 

  74. Mansky LM. Retrovirus mutation rates and their role in genetic variation. J Gen Virol 79:1337–1345;1998.

    Google Scholar 

  75. Martinelli SC, Goff SP. Rapid reversion of a deletion mutation in Moloney murine leukemia virus by recombination with a closely related endogenous provirus. Virology 174:135–144;1990.

    Google Scholar 

  76. McCutchan FE, Carr JK, Bajani M, Sanders-Buell E, Harry TO, Stoeckli TC, Robbins KE, Gashau W, Nasidi A, Janssens W, Kalish ML. Subtype G and multiple forms of A/G intersubtype recombinant human immunodeficiency virus type 1 in Nigeria. Virology 254:226–234;1999.

    Google Scholar 

  77. Méric C, Goff SP. Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in the Cys-His box of the nucleocapsid protein. J Virol 63:1558–1568;1989.

    Google Scholar 

  78. Mikkelsen JG, Lund AH, Kristensen KD, Duch M, Sørensen MS, Jørgensen P, Pedersen FS. A preferred region for recombinational patch repair in the 5′ untranslated region of primer binding site-impaired murine leukemia virus vectors. J Virol 70:1439–1447;1996.

    Google Scholar 

  79. Mikkelsen JG, Lund AH, Dybkær K, Duch M, Pedersen FS. Extended minus strand DNA as template for R-U5-mediated second strand transfer in recombinational rescue of primer binding site-modified retroviral vectors. J Virol 72:2519–2525;1998.

    Google Scholar 

  80. Mikkelsen JG, Lund AH, Duch M, Pedersen FS: Recombination of the 5′ leader of murine leukemia virus is accurate and influenced by sequence identity with a strong bias toward the kissing-loop dimerization domain. J Virol 72:6967–6978;1998.

    Google Scholar 

  81. Mikkelsen JG, Lund AH, Duch M, Pedersen FS. Forced recombination of ω-modified murine leukaemia virus-based vectors with murine leukaemia-like and VL30 murine endogenous retroviruses. J Gen Virol 80:2957–2967;1999.

    Google Scholar 

  82. Mikkelsen JG, Lund AH, Duch M, Pedersen FS. Mutations of the kissing-loop dimerization sequence influence site-specificity of murine leukemia virus vector recombination in vivo. J Virol 74:600–610;2000.

    Google Scholar 

  83. Miller AD. Retrovirus packaging cells. Hum Gene Ther 1:5–14;1990.

    Google Scholar 

  84. Mitra SW, Goff SP, Gilboa E, Baltimore D. Synthesis of a 600-nucleotide-long plus-strand DNA by virions of Moloney murine leukemia virus. Proc Natl Acad Sci USA 76:4355–4359;1979.

    Google Scholar 

  85. Murphy JE, Goff SP. Forced integration of Moloney murine leukemia virus DNA with a mutant integration site occurs through recombination with VL30 DNA. Virology 204:458–461;1994.

    Google Scholar 

  86. Negroni M, Ricchetti M, Nouvel P, Buc H. Homologous recombination promoted by reverse transcriptase durino copying of two distinct RNA templates. Proc Natl Acad Sci USA 92:6971–6975;1995.

    Google Scholar 

  87. Nikbakht KN, Ou CY, Boone LR, Glover PL, Yang WK. Nucleotide sequence analysis of endogenous murine leukemia virus-related proviral clones reveals primer-binding sites. For glutamine tRNA. J Virol 54:889–893;1985.

    Google Scholar 

  88. Norton JD, Connor J, Avery RJ. Genesis of Kirsten murine sarcome virus: Sequence analysis reveals recombination points and potential leukaemogenic determinant on parental leukaemia virus genome. Nucleic Acids Res 12:6841–6852;1984.

    Google Scholar 

  89. Olsen JC, Bova Hill C, Grandgenett DP, Quinn TP, Manfredi JP, Swanstrom R. Rearrangements in unintegrated retroviral DNAs are complex and are the result of multiple genetic determinants. J Virol 64:5475–5484;1990.

    Google Scholar 

  90. O'Rearr JJ, Temin HM. Spontenous changes in nucleotide sequence in proviruses of spleen necrosis virus, an avian retrovirus. Proc Natl Acad Sci USA 79:1230–1234;1982.

    Google Scholar 

  91. Otto E, Jones-Trower A, Vanin EF, Stambaugh K, Mueller SN, Anderson WF, McGarrity GJ. Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum Gene Ther 5:567–575;1994.

    Google Scholar 

  92. Ou CY, Boone LR, Koh CK, Tennant RW, Yang WK. Nucleotide sequences ofgag-pol regions that determine the Fv-1 host range property of BLAB/c N-tropic and B-tropic murine leukemia viruses. J Virol 48:779–784;1983.

    Google Scholar 

  93. Paillart JC, Marquet R, Skripkin E, Ehresmann B, Ehresmann C. Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. J Biol Chem 269;27486–27493;1994.

    Google Scholar 

  94. Palaniappan C, Wisniewski M, Wu W, Fay PJ, Bambara RA. Misincorporation by HIV-1 reverse transcriptase promotes recombination via stand transfer synthesis. J Biol Chem 271:22331–22338;1996.

    Google Scholar 

  95. Pandey R, Ghosh AK, Vinod Kumar D, Bachman BA, Shibata D, Roy-Burman P. Recombination between feline leukemia virus subgroup B or C and endogenousenv elements alters the in vitro biological activities of the viruses. J Virol 65:6495–6508;1991.

    Google Scholar 

  96. Panganiban AT, Fiore D. Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241:1064–1069;1988.

    Google Scholar 

  97. Pathak VK, Hu WS. ‘Might as well jump!’ Template switching by retroviral reverse transcriptase, defective genome formation, and recombination. Semin Virol 8:141–150;1997.

    Google Scholar 

  98. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286;1997.

    Google Scholar 

  99. Patience C, Takeuchi Y, Cosset FL, Weiss RA. Packaging of endogenous retroviral sequences in retroviral vectors produced by murine and human packaging cells. J Virol 72:2671–2676;1998.

    Google Scholar 

  100. Peeters M, Liegeois F, Torimiro N, Bourgeois A, Mpoudi E, Vergne L, Saman E, Delaporte E, Saragosti S. Characterization of a highly replicative intergroup M/O human immunodeficiency virus type 1 recombinant isolated from a Cameroonian patient. J Virol 73:7368–7375;1999.

    Google Scholar 

  101. Peliska JA, Benkovic SJ. Mechanism of DANN strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258:1112–1118;1992.

    Google Scholar 

  102. Pulsinelli GA, Temin HM. Characterization of large deletions occurring during a single round of retrovirus vector replication: Novel deletion mechanism involving errors in strand transfer. J Virol 65:4786–4797;1991.

    Google Scholar 

  103. Pulsinelli GA, Temin HM. High rate of mismatch extension during reverse transcription in a single round of retrovirus replication. Proc Natl Acad Sci USA 91:9490–9494;1994.

    Google Scholar 

  104. Purcell DF, Broscius CM, Vanin EF, Buckler CE, Nienhuis AW, Martin MA. An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. J Virol 70:887–897;1996.

    Google Scholar 

  105. Ramsey CA, Panganiban AT. Replication of the retroviral terminal repeat sequence during in vivo reverse transcription. J Virol 67:4114–4121;1993.

    Google Scholar 

  106. Rattray AJ, Champoux JJ. The role of Moloney murine leukemia virus RNase H activity in the formation of plus-strand primers. J Virol 61:2843–2851;1987.

    Google Scholar 

  107. Roberts JD, Kunkel TA. Fidelity of human cell DNA replication complex. Proc Natl Acad Sci USA 85:7064–7068;1988.

    Google Scholar 

  108. Robertson DL, Sharp PM, McCutchan FE, Hahn BH. Recombination in HIV-1. Nature 374:124–126;1995.

    Google Scholar 

  109. Salminen MO, Carr JK, Robertson DL, Hegerich P, Gotte D, Koch C, Sanders-Buell E, Gao F, Sharp PM, Hahn BH, Burke DS, McCutchan FE. Evolution and probable transmission of intersubtype recombinant human immunodeficiency virus type 1 in a Zambian couple. J Virol 71:2647–2655;1997.

    Google Scholar 

  110. Scadden DT, Fuller B, Cunningham JM. Human cells infected with retrovirus vectors acquire an endogenous murine provirus. J Virol 64:424–427;1990.

    Google Scholar 

  111. Schwartzberg P, Colicelli J, Goff SP. Recombination between a defective retrovirus and homologous sequences in host DNA: Reversion by patch repair. J Virol 53:719–726;1985.

    Google Scholar 

  112. Scolnick EM, Vass WC, Howk RS, Duesberg PH. Defective retrovirus-like 30S RNA species of rat and mouse cells are infectious if packaged by type C helper virus. J Virol 29:964–972;1979.

    Google Scholar 

  113. Skripkin E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci USA 91:4945–4949;1994.

    Google Scholar 

  114. Stoye J. Proviruses pose potential problems. Nature 386:126–127;1997.

    Google Scholar 

  115. Stoye J, Coffin JM. Endogenous viruses. In: Weiss R, Teich N, Varmus HE, Coffin JM, eds. RNA Tumor Viruses, ed 2. Supplements and appendixes. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 357–405;1985.

    Google Scholar 

  116. Stoye J, Coffin JM. The four classes of endogenous murine leukemia virus: Structural relationship and potential for recombination. J Virol 61:2659–2669;1987.

    Google Scholar 

  117. Stoye J, Morono C, Coffin JM. Virological events leading to spontaneous AKR thymomas. J Virol 65:1273–1285;1991.

    Google Scholar 

  118. Stuhlmann H, Berg P. Homologous recombination of copackaged retrovirus RNAs during reverse transcription. J Virol 66:2378–2388;1992.

    Google Scholar 

  119. Stuhlmann H, Dieckmann M, Berg P. Transduction of cellularneo mRNA by retrovirus-mediated recombination. J Virol 64:5783–5796;1990.

    Google Scholar 

  120. Swanstrom R, Bishop JM, Varmus HE. Structure of a replication intermediate in the synthesis of Rous sarcoma virus DNA in vivo. J Virol 42:337–341;1982.

    Google Scholar 

  121. Takeshia J, Zekeng L, Ido E, Yanaguchi-Kabata Y, Mboudejka I, Harada Y, Miura T, Kaptué L, Hayami M. Human immunodeficiency virus type 1 intergoup (M/O) recombination in Cameroon. J Virol 73:6810–6820;1999.

    Google Scholar 

  122. Telesnitsky A, Goff SP. Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SP, Varmus HE, eds. Retroviruses. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 121–160;1997.

    Google Scholar 

  123. Temin HM. Sex and recombination in retroviruses. Trends Genet 7:71–74;1991.

    Google Scholar 

  124. Temin HM. Retrovirus variation and reverse transcription: Abnormal strand transfers result in retrovirus genetic variation. Proc Natl Acad Sci USA 90:6900–6903;1993.

    Google Scholar 

  125. Temin HM, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213;1970.

    Google Scholar 

  126. Topping R, Demoitie MA, Shin NH, Telesnitsky A. Cis-acting elements required for strong stop acceptor template selection during Moloney murine leukemia virus reverse transcription. J Mol Biol 281:1–15;1998.

    Google Scholar 

  127. Torrent C, Bordet T, Darlix JL. Analytical study of rat retrotransposon VL30 RNA dimerization in vitro and packaging in murine leukemia virus. J Mol Biol 240:434–444;1994.

    Google Scholar 

  128. Vanin EF, Kaloss M, Broscius C, Nienhuis AW. Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-cell lymphomas and observations regarding the mechanism of oncogenesis. J Virol 68:4241–4250;1994.

    Google Scholar 

  129. van Wamel JL, Berkhout B. The first strand transfer during HIV-1 reverse transcription can occur either intramolecularly or intermolecularly. Virology 244:245–251;1998.

    Google Scholar 

  130. Waga S, Stillman B. The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751;1998.

    Google Scholar 

  131. Wakefield JK, Rhim H, Morrow CD. Minimal sequence requirements of a functional human immunodeficiency virus type 1 primer binding site. J Virol 68:1605–1614;1994.

    Google Scholar 

  132. Wei Q, Fultz PN. Extensive diversification of human immunodeficiency virus type 1 subtype B strains during dual infection of a chimpanzee that progressed to AIDS. J Virol 72:3005–3017;1998.

    Google Scholar 

  133. Wolgamot G, Bonham L, Miller AD. Sequence analysis ofMus dunni endogenous virus reveals a hybrid VL30/gibbon ape leukemia virus-like structure and a distinct envelope. J Virol 72:7459–7466;1998.

    Google Scholar 

  134. Wooley DP, Smith RA, Czajak S, Desrosiers RC. Direct demonstration of retroviral recombination in a rhesus monkey. J Virol 71:9650–9653;1997.

    Google Scholar 

  135. Wu W, Blumberg BM, Fay PJ, Bambara RA. Stand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. J Biol Chem 270:325–332;1995.

    Google Scholar 

  136. Yin PD, Pathak VK, Rowan AE, Teufel RJ II, Hu WS. Utilization of non-homologous minus-strand DNA transfer to generate recombinant retroviruses. J Virol 71:2487–2494;1997.

    Google Scholar 

  137. Yin PD, Hu WS. RNAs from genetically distinct retroviruses can copackage and exchange genetic information in vivo. J Virol 71:6237–6242;1997.

    Google Scholar 

  138. You JC, McHenry CS. Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. J Biol Chem 269:31491–31495;1994.

    Google Scholar 

  139. Zhang J, Temin HM. Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259:234–238;1993.

    Google Scholar 

  140. Zhang J, Temin HM. Retrovirus recombination depends on the length of sequence identity and is not error prone. J Virol 68:2409–2414;1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkelsen, J.G., Pedersen, F.S. Genetic reassortment and patch repair by recombination in retroviruses. J Biomed Sci 7, 77–99 (2000). https://doi.org/10.1007/BF02256615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256615

Key Words

Navigation