Advertisement

Journal of Biomedical Science

, Volume 11, Issue 2, pp 172–178 | Cite as

Short-term ascorbic acid deficiency induced oxidative stress in the retinas of young guinea pigs

  • Yoshiji Ohta
  • Taku Okubo
  • Takafumi Niwa
  • Takashi Yamasaki
  • Masayuki Horiguchi
Original Paper

Abstract

We examined whether short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs. Four-week-old guinea pigs were given a scorbutic diet (20 g/animal/day) with and without adequate ascorbic acid (400 mg/animal/day) in drinking water for 3 weeks. The serum concentrations of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 14.1 and 4.1%, respectively, of those in the adequate group. The retinal contents of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 6.4 and 27.3%, respectively, of those in the adequate group. The retinal content of thiobarbituric acid-reactive substances, an index of lipid peroxidation, was 1.9-fold higher in the deficient group than in the adequate group. Retinal reduced glutathione and vitamin E contents in the deficient group were 70.1 and 69.4%, respectively, of those in the adequate group. This ascorbic acid deficiency did not affect serum thiobarbituric acid-reactive substances and reduced glutathione concentrations but increased serum vitamin E concentration. These results indicate that short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs without disrupting systemic antioxidant status.

Key Words

Ascorbic acid Reduced glutathione Vitamin E Lipid perioxide Oxidative stress Ascorbic acid deficiency (young guinea pigs) Retina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe K, Yuguchi Y, Katsui G. Quantitative determination of tocopherol by high-speed liquid chromatography. J Nutr Sci Vitaminol 21:183–188;1975.PubMedGoogle Scholar
  2. 2.
    Beyer RR. The role of ascorbate in antioxidant protection of biomembranes: Interaction with vitamin E and coenzyme Q. J Bioenerg Biomembr 26:349–358;1994.PubMedGoogle Scholar
  3. 3.
    Bodannes RS, Chan PC. Ascorbic acid as a scavenger of singlet oxygen. FEBS Lett 105:195–196;1979.PubMedGoogle Scholar
  4. 4.
    Burns JJ. Biosynthesis ofL-ascorbic acid; basic defect in scurvy. Am J Med 26:740–748;1959.CrossRefPubMedGoogle Scholar
  5. 5.
    Chauhan VPS, Sarkar AK. Effect of acute ascorbic acid deficiency on the plasma lipids and postheparin lipolytic activity in guinea pigs. Ann NY Acad Sci 498:464–466;1987.Google Scholar
  6. 6.
    Crabtree DV, Adler AJ, Snodderly DM. Vitamin E, retinyl palmitate, and protein in rhesus monkey retina and retinal pigment epitheliumchoroid. Invest Ophthalmol Vis Sci 37:47–60;1996.PubMedGoogle Scholar
  7. 7.
    Delamere NA. Ascorbic acid and the eye. Subcell Biochem 25:313–329;1996.PubMedGoogle Scholar
  8. 8.
    Deutsch JC. Ascorbic acid oxidation by hydrogen peroxide. Arch Biochem Biophys 255:1–7;1998.Google Scholar
  9. 9.
    Fliesler SJ, Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22:79–131;1983.CrossRefPubMedGoogle Scholar
  10. 10.
    Friedrichson T, Kalbach HL, Buck P, van Kuijk GM. Vitamin E in macular and peripheral tissues of human eye. Curr Eye Res 14:693–701;1995.PubMedGoogle Scholar
  11. 11.
    Ginter E. Cholesterol: Vitamin C controls its transformation to bile acids. Science 179:702–704;1973.PubMedGoogle Scholar
  12. 12.
    Heath H, Becj TC, Rutter AC. Biochemical changes in aphakia. Vision Res 1:274–286;1962.CrossRefGoogle Scholar
  13. 13.
    Hill KE, Montine TJ, Motley AK, Li X, May JM, Burk RF. Combined deficiency of vitamins E and C causes paralysis and death in guinea pigs. Am J Clin Nutr 77:1484–1488;2003.PubMedGoogle Scholar
  14. 14.
    Huster D, Reichenbach A, Reichelt W. The glutathione content of retinal Müller (glial) cells: Effect of pathological conditions. Neurochem Int 36:461–469;2000.CrossRefPubMedGoogle Scholar
  15. 15.
    Jacques PF. The potential preventive effects of vitamins for cataract and age-related macular degeneration. Int J Vitam Nutr Res 69:198–205;1999.PubMedGoogle Scholar
  16. 16.
    Kannan R, Tang D, Mackic JB, Zlokovic BV, Fernandez-Checa JC. A simple technique to determine glutathione (GSH) levels and synthesis in ocular tissues as GSH-bimane adduct: Application to normal and galactosemic guinea-pigs. Exp Eye Res 56:45–50;1993.PubMedGoogle Scholar
  17. 17.
    Keys SA, Zimmerman WF. Antioxidant activity of retinol, glutathione, and taurine in bovine photoreceptor cell membranes. Exp Eye Res 68:693–702;1999.PubMedGoogle Scholar
  18. 18.
    Lykkesfeldt J. Increased oxidative damage in vitamin C deficiency is accompanied by induction of ascorbic acid recycling capacity in young but not mature guinea pigs. Free Radic Res 36:567–574;2002.PubMedGoogle Scholar
  19. 19.
    Mårtensson J, Han J, Griffith OW, Meister A. Glutathione ester delays the onset of scurvy in ascorbic acid-deficient guinea pigs. Proc Natl Acad Sci USA 90:317–321;1993.PubMedGoogle Scholar
  20. 20.
    Nakajima H, Yagihashi O, Kashima Y, Ishikawa H, Kitano S, Kimoto I, Tomioka E, Mano M, Takeuchi S. Effects of ascorbic acid on trace element metabolism in the choroids-retina of streptozotocin-induced diabetic guinea pigs. Nippon Ganka Gakkai Zasshi 97:340–345;1993.PubMedGoogle Scholar
  21. 21.
    Nielisen JC, Naash MI, Anderson RE. The regional distribution of vitamins E and C in mature and premature human retinas. Invest Ophthalmol Vis Sci 29:22–26;1987.Google Scholar
  22. 22.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358;1979.CrossRefPubMedGoogle Scholar
  23. 23.
    Ohta Y, Okubo T, Niwa T, Yamasaki T, Horiguchi M. Prolonged marginal ascorbic acid deficiency induces oxidative stress in retina of guinea pigs. Int J Vitam Nutr Res 72:63–70;2002.PubMedGoogle Scholar
  24. 24.
    Okamura M. An improved method for determination ofL-ascorbic acid andL-dehydroascorbic acid in blood plasma. Clin Chim Acta 103:259–268;1980.CrossRefPubMedGoogle Scholar
  25. 25.
    Organisciak DT, Wang H-M, Li Z-Y, Tso MOM. The preventive effect of ascorbate in retinal light damage. Invest Ophthalmol Vis Sci 26:1580–1588;1985.PubMedGoogle Scholar
  26. 26.
    Organisciak DT, Wang H-M, Noell WK. Aspects of the ascorbate protective mechanism in retinal light damage of rats with normal and reduced ROS docosahexaenoic acid. Prog Clin Biol Res 247:455–468;1987.PubMedGoogle Scholar
  27. 27.
    Panemangalore M, Lee CJ. Evaluation of the indices of retinol and α-tocopherol status in free-living elderly. J Gerontol 47:B98-B104;1992.PubMedGoogle Scholar
  28. 28.
    Reed DJ. Glutathione: Toxicological implications. Annu Rev Pharrmacol Toxicol 30:603–631;1990.CrossRefGoogle Scholar
  29. 29.
    Reichelt W, Stabe-Burow J, Pannicke T, Weicher H, Heineman U. The glutathione level of retinal Müller glial cells is dependent on the high-affinity sodium-dependent uptake of glutathione. Neuroscience 77:1213–1224;1997.PubMedGoogle Scholar
  30. 30.
    Rose RC. Ascorbic acid metabolism in protection against free radicals: A radiation model. Biochem Biophys Res Commun 169:430–436;1990.PubMedGoogle Scholar
  31. 31.
    Rose RC, Bode AM. Biology of free radical scavengers: An evaluation of ascorbate. FASEB J 7:1135–1142;1993.PubMedGoogle Scholar
  32. 32.
    Rose RC, Bode AM. Ocular ascorbate transport and metabolism. Comp Biochem Physiol 100A:273–285;1991.CrossRefGoogle Scholar
  33. 33.
    Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 25:192–205;1968.CrossRefPubMedGoogle Scholar
  34. 34.
    Saxena M, Singhal SD, Awasthi YC. A specific, sensitive, and rapid method for the determination of glutathione and its application in ocular tissues. Exp Eye Res 55:461–468;1992.CrossRefPubMedGoogle Scholar
  35. 35.
    Som S, Raha C, Chaterjee JB. Ascorbic acid: A scavenger of superoxide radical. Acta Vitaminol Enzymol 5:243–250;1983.PubMedGoogle Scholar
  36. 36.
    Stephens RJ, Negi DS, Short SM, van Kuijk FJ, Dratz EA, Thomas DW. Vitamin E distribution in ocular tissues following long-term dietary depletion and supplementation as determined by microdissection and gas chromatography-mass spectrometry. Exp Eye Res 47:237–245;1988.CrossRefPubMedGoogle Scholar
  37. 37.
    Stoyanovsky DA, Goldman R, Darrow RM, Organisciak DT, Kagan VE. Endogenous ascorbate regenerates vitamin E in the retina directly and in combination with exogenous dihydrolipoic acid. Curr Eye Res 14:181–189;1995.PubMedGoogle Scholar
  38. 38.
    Terrasa A, Guajardo M, Catalá TTT. Selective inhibition of the non-enzymatic lipid peroxidation of phosphatidylserine in rod outer segments by α-tocopherol. Mol Cell Biochem 211:39–45;2000.CrossRefPubMedGoogle Scholar
  39. 39.
    Thurnham DI, Davis JA, Crump BJ, Stinuayaka RD, Davis M. The use of different lipids to express serum tocopherol: Lipid ratios for the determination of vitamin E status. Ann Clin Biochem 23:514–520;1986.PubMedGoogle Scholar
  40. 40.
    Tso MOM, Woodford BJ, Lam K-W. Distribution of ascorbate in normal primate retina and after photic injury: A biochemical, morphological correlated study. Curr Eye Res 3:181–191;1984.PubMedGoogle Scholar
  41. 41.
    Tso MOM. Retinal photic injury in normal and scorbutic monkeys. Trans Am Ophthalmol Soc 85:498–556;1987.PubMedGoogle Scholar
  42. 42.
    Veen-Baigent MJ, Ten Cate AR, Bright-See E, Rao AV. Effects of ascorbic acid on the health parameters in guinea pigs. Ann NY Acad Sci 258:339–354;1975.PubMedGoogle Scholar
  43. 43.
    Weisinger HS, Vingrys AJ, Bui BV, Sinclair AJ. Effects of dietary n-3 fatty acid deficiency and repletion in the guinea pig retina. Invest Ophthalmol Vis Sci 40:327–338;1996.Google Scholar
  44. 44.
    Weisinger HS, Vingrys AJ, Sinclair AJ. Effect of dietary n-3 deficiency on the electroretinogram in the guinea pig. Ann Nutr Metab 40:91–98;1996.PubMedGoogle Scholar
  45. 45.
    Weisinger HS, Vingrys AJ, Sinclair AJ. The effect of docosahexaenoic acid on the electroretinogram of the guinea pig. Lipids 31:65–70;1996.PubMedGoogle Scholar
  46. 46.
    Winkler BS, Giblin FJ. Glutathione oxidation in retina: Effects on biochemical and electrical activities. Exp Eye Res 36:287–297;1983.CrossRefPubMedGoogle Scholar
  47. 47.
    Winkler BS, Orselli SM, Rex TS. The redox couple between glutathione and ascorbic acid: A chemical and physiological perspective. Free Radic Biol Med 17:333–349;1994.PubMedGoogle Scholar
  48. 48.
    Woodford BJ, Tso MOM. Exaggeration of photic injury in scorbutic guinea pig retinas. Invest Ophthalmol Vis Sci 25(suppl):90;1984.Google Scholar
  49. 49.
    Woodford BJ, Tso MOM, Lam K-W. Reduced and oxidized ascorbates in guinea pig retina under normal and light-exposed conditions. Invest Ophthalmol Vis Sci 24:862–867;1983.PubMedGoogle Scholar
  50. 50.
    Yagi K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15:212–216;1976.CrossRefPubMedGoogle Scholar
  51. 51.
    Zannoi V, Lynch M, Goldstein S, Sato P. A rapid micromethod for the determination of ascorbic acid in plasma and tissues. Biochem Med 11:41–48;1974.PubMedGoogle Scholar

Copyright information

© National Science Council 2004

Authors and Affiliations

  • Yoshiji Ohta
    • 4
  • Taku Okubo
    • 2
  • Takafumi Niwa
    • 1
  • Takashi Yamasaki
    • 3
  • Masayuki Horiguchi
    • 1
  1. 1.Department of Ophthalmology, School of MedicineFujita Health UniversityToyoake
  2. 2.Department of OphthalmologyShinshiro Municipal HospitalShinshiro
  3. 3.Yamasaki Eye ClinicKasugaiJapan
  4. 4.Department of Chemistry School of MedicineFujita Health UniversityToyoake, AichiJapan

Personalised recommendations